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Connecting polymer network fracture to molecular-level chain scission remains a quandary. While the
Lake-Thomas model predicts the intrinsic fracture energy of a polymer network is the energy to rupture a
layer of chains, it underestimates recent experiments by ∼1–2 orders of magnitude. Here we show that the
intrinsic fracture energy of polymerlike networks stems from nonlocal energy dissipation by relaxing
chains far from the crack tip using experiments and simulations of 2D and 3D networks with varying
defects, dispersity, topologies, and length scales. Our findings not only provide physical insights into
polymer network fracture but offer design principles for tough architected materials.
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Polymer networks are the molecular scaffolds that form
the basis of materials in a wide range of both common and
highly specialized applications, including consumer prod-
ucts (e.g., tires, rubber bands, contact lenses) [1], biomedi-
cal implants [2] and soft electronic devices [3]. The lifetime
of polymer networks is limited by their fracture, which is
characterized by the energy required to propagate a crack
per newly created surface area [4]. This energy typically
has contributions from bulk dissipation and elastically
active structures within the material [5]. The contribution
from the latter is known as intrinsic fracture energy [6,7].
As established by Griffith in the 1920s [8], the intrinsic
fracture energy of glass can be considered as the energy
required to break a layer of atomic bonds, i.e.,
Γ0 ¼ MUbond, where M is the number of broken atomic
bonds per unit created area and Ubond is the bond
dissociation energy of a single atomic bond [Fig. 1(a)].
Although this simple model semiquantitatively explained
the fracture of some hard materials, the intrinsic fracture
energy of polymer networks has been found to be several
orders of magnitude larger than just that of breaking a
single layer of atomic bonds [9].
Lake and Thomas explained this phenomenon in 1967

by connecting the intrinsic fracture energy of polymer
networks to the rupture of covalent polymer chains [10].
This model predicts that the intrinsic fracture energy is
equal to the number of broken bridging polymer chains per
unit created area (M) multiplied by the work to rupture a
bridging polymer chain (Uchain), i.e., Γ0 ¼ ΓLT ¼ MUchain
[Fig. 1(b)]. During crack propagation, the energy stored in
the bridging polymer chains is dissipated after the chains
are broken. The Lake-Thomas model has been widely
applied to explain experimental data and predict intrinsic
fracture energy [11–13]. Recent experiments [14,15],
however, indicate that the Lake-Thomas model has also

significantly underestimated the intrinsic fracture energy of
polymer networks by ∼1–2 orders of magnitude (see
Table I). Modified models have been proposed to ration-
alize this underestimate [7,15–17], but these models cannot
fully explain the orders of magnitude discrepancy between
the Lake-Thomas model and experimental results. This
discrepancy implies the potential for nonlocal energy
release and dissipation even within well-formed gels that
are highly elastic. This is further supported by recent
studies on brittle hydrogels [18,19], which suggest the
existence of a nonlocal process zone around the crack tip.
In this Letter, we investigate the fracture of generic

networks that consist of polymerlike chains across multiple
length scales. We find that the intrinsic fracture energy of
the network is orders of magnitude greater than the energy
required to rupture a single layer of polymer chains. This

FIG. 1. Intrinsic fracture energy. (a) In Griffith’s theory, the
intrinsic fracture energy equals the energy needed to break a
single layer of atomic bonds. (b) In the Lake-Thomas model, the
intrinsic fracture energy equals the energy needed to break a
single layer of polymer chains. (c) Our study suggests that the
intrinsic fracture energy mainly results from nonlocal energy
dissipation by relaxing polymer chains far away from the crack
tip and is orders of magnitude higher than Lake-Thomas
prediction.
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discrepancy arises because energy is released and dissi-
pated from the relaxation of polymer chains far beyond the
crack tip when a bridging chain ruptures [Fig. 1(c)].
We adopt the modified freely jointed chain model

(m-FJC) [21] to describe the force-extension dependence
of chains. The m-FJC model considers both the conforma-
tional entropic elasticity of the polymer chain and the
energetic elasticity of backbone bonds (e.g., bond stretch-
ing and bending). The relationship between its stretch λ and
reaction force f can be written as [21]
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where the parameters KS and KE are the soft entropic
modulus [Fig. 2(a), blue] and the stiff energetic modulus
[Fig. 2(a), red] of the polymer chains, respectively
(KE ≫ KS for typical polymer chains) [22]. The parameter
λlim is the entropic stretch limit beyond which the force
increases rapidly due to the deformation of backbone
bonds.
To model the fracture of polymerlike networks, we start

with 2D samples with triangular lattices consisting of n
nodes and e edges [Fig. 2(b)]. Each edge is modeled by a
nonlinear spring with initial end-to-end distance r0 and
force-stretch relation fðλÞ defined in Eq. (1) [29,30]. To
further capture the fracture of a polymer chain, the non-
linear spring is set to break at a force ff with stretch λf. In
the simulation, clamped boundary conditions are applied to
the top and bottom surfaces, which quasistatically stretch
the sample from an initial height of h0 to a height of h. The
deformation of the lattices is fully described by the
coordinates of every node ðxi; yiÞ, where i ¼ 1;…; n. At
each loading step, the total energy of the system is obtained
by summing the elastic energy of every spring:

Utotal ¼
X
i;j

Z
λij

1
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where λij ¼ r−10
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q
is the stretch of

the edge connecting node i with j. The coordinates of each
node ðxi; yiÞ are then numerically determined by minimiz-
ing Utotal using Newton’s method in MATLAB.
Additionally, if λij > λf, which indicates that the edge

connecting nodes i and j has broken, this edge will be
removed from the lattice for future steps (see numerical
details in the Supplemental Material [31], Sec. S2). To
measure the intrinsic fracture energy of a given network, we
perform the pure shear test [4]. This includes two steps:
(i) load a notched sample to the point where the bridging
chain breaks and record the critical height of the sample hc;
(ii) load an unnotched sample and record the nominal stress
as a function of sample height h [Fig. 2(b)]. The intrinsic
fracture energy of the network is then calculated as

Γ0 ¼
Z

hc

h0

sdh; ð3Þ

where s is the nominal stress of the unnotched sample. The
value of Γ0 is an intrinsic property of the network and is
size independent, provided the network is sufficiently large.
For polymerlike networks with KE ≫ KS, a converged

TABLE I. The ratio of experimentally measured intrinsic
fracture energy, Γ0, to the predicted values according to the
Lake-Thomas model, ΓLT. These experimental results indicate
that the Lake-Thomas model underestimated the intrinsic fracture
energy of polymer networks by ∼1–2 orders of magnitude.

Wang et al.
[20]

Lin et al.
[7]

Akagi et al.
[12]

Barney et al.
[15]
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FIG. 2. Intrinsic fracture energy of polymerlike networks. (a) A
single strand is governed by a strongly nonlinear force-stretch
curve, with a long, soft entropic part characterized by a modulus
KS and a short, stiff energetic part characterized by a modulus
KE. (b) To measure the intrinsic fracture energy of polymerlike
networks, a pure shear test is conducted. (c) The intrinsic fracture
energy Γ0 of polymerlike networks with different ratios of
KE=KS (solid line) compared to a network consisting of linear
chains (triangular marker). These results are obtained from
numerical simulations under quasistatic loading conditions.
Parameters KS and KE are taken from the single-molecule force
spectroscopy experiments of different polymers: poly (acrylic
acid) (PAA) [23], poly (vinyl alcohol) (PVA) [24], polyisoprene
[25], poly(acryl amide) (PAAM) and poly(N-isopropyl acryla-
mide) (PNIPAM) [26], poly(dimethylacrylamide) (PDMA) and
poly(diethylacrylamide) (PDEA) [27], and poly(ethylene glycol)
(PEG) [28].

PHYSICAL REVIEW LETTERS 131, 228102 (2023)

228102-2



value of Γ0 requires a significantly large sample, typically
containing over 1000 layers of chains (see Supplemental
Material [31], Sec. S2.4 for convergence studies).
Using a sufficiently large sample with 4000 layers, we

calculate the fracture energies Γ0 of the polymerlike net-
works with a wide range of KE=KS values and compare
them to the Lake-Thomas predictions, i.e., ΓLT ¼ MUchain.
Parameters KE and KS are taken from reported single-
molecule force spectroscopy (SMFS) experimental results
of different polymers that use the m-FJC model as the
fitting function. As shown in Fig. 2(c), Γ0=ΓLT is signifi-
cantly larger than unity for all networks with polymerlike
chains. This phenomenon is closely linked to the non-
linearity of the force-stretch behavior of the polymerlike
chains, as Γ0=ΓLT increases with KE=KS. Notably, when
we use linear springs to model the chains, the ratio Γ0=ΓLT
nears the expectation of the Lake-Thomas model
(triangular marker). These results emphasize that the
force-extension relationship of chains directly affects the
intrinsic fracture energy of polymerlike networks.
To assess the generality of our findings, we conduct

additional simulations that investigate the impact of inho-
mogeneities, defects, and lattice topologies on the intrinsic
fracture energy of polymerlike networks. Specifically, we
feature the PEG-like chain with KE=KS ¼ 1.8 × 104 and
examine the intrinsic fracture energy of irregular networks
[lattices with dispersed edge lengths, Fig. 3(a)] and net-
works with dangling chains [lattices with missing edges,
Fig. 3(b)]. Unsurprisingly, we find that these defected

networks retain large Γ0=ΓLT ratios. Different topologies,
including triangular, square, and hexagonal lattices, along
with 3D diamond cubic lattices are also investigated with
various KE=KS ratios. Figure 3(c) shows that increasing
chain nonlinearity leads to a magnifying trend of Γ0=ΓLT in
different 2D lattice topologies, where the hexagonal lattice
exhibits relatively higher fracture energy due to its larger
loop size [17,38–40]. A similar trend is also observed in the
3D diamond cubic network [Fig. 3(d)]. These results
signify that more chain nonlinearity leading to a higher
Γ0=ΓLT is a universal phenomenon, regardless of lattice
topology or dimensionality. These numerical results are
consistent with recent experimental findings [7,12,15,20]
showing that the intrinsic fracture energy of polymer
networks can be significantly larger than the values
predicted by the Lake-Thomas model (see Table S1,
Supplemental Material [31]).
To further understand the anomalously high intrinsic

fracture energy of polymerlike networks, we investigate the
behavior of chains near the crack tip [Fig. 4(a)] by
comparing networks of PEG-like chains to those with
linear elastic chains. The strain energy distributions of
the two networks just prior to the fracture of a chain are
shown in Fig. 4(b), where the color indicates the energy on
each chain normalized by the work to rupture a single chain
Uchain. Notably, the energy distribution of the PEG network
is clearly nonlocal when contrasted to the network with
linear chains, where the energy is concentrated in the one or
two layers nearest to the crack tip. We therefore postulate
that for polymerlike networks, the abnormally high ratio of
Γ0=ΓLT is predominantly due to nonlocal energy dissipa-
tion by the relaxation of chains distant from the crack tip.
To test this hypothesis, we analyze the released energy of
each chain, which is defined by the energy difference
before and after the fracture of a single chain at the crack
tip. The Lake-Thomas model predicts the released energy
of the broken chain contributes to the overall intrinsic
fracture energy of the network. This is qualitatively true for
the network consisting of chains with linear elasticity,
where the major energy release is limited to a relatively
confined zone around the crack tip [e.g., ∼1–2 layers
Fig. 4(c), top]. However, for the network of PEG-like
chains, even chains far away from the crack tip (e.g., > 20
layers) release a significant amount of energy after the
rupture of a single chain at the crack tip. The released
energy is then converted into kinetic energy in the network
and is eventually dissipated.
To investigate where and how the released energy is

dissipated, we establish a spring-mass model to simulate
the dynamic process upon the fracture of a chain at the
crack tip until a new equilibrium is reached. When a
bridging chain ruptures, the tension on the bridging chain
suddenly vanishes, and other junctions in the network
continuum are not balanced. The elastic energy stored in
the continuum is then released and becomes the kinetic
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FIG. 3. Generality of elevated intrinsic fracture energy in
polymerlike networks. (a) Intrinsic fracture energy of irregular
networks with dispersed edge lengths, with variations ranging
from 0% to 50%, and (b) networks with missing chains ranging
from 0% to 20%. Both (a) and (b) are based on single strands with
KE=KS ¼ 1.8 × 104 (PEG chains). Intrinsic fracture energy of
networks with (c) different 2D topologies, including triangular,
square, and hexagonal lattices, and (d) 3D diamond cubic lattices
for varying KE=KS ratios.

PHYSICAL REVIEW LETTERS 131, 228102 (2023)

228102-3



energy of the junctions. In real polymer networks, the
energy released from the network continuum is damped by
the relaxation of both broken and unbroken polymer
chains, and eventually dissipated as heat. To damp the
kinetic energy induced by the chain breaking in our
simulated network, we implement viscous damping on
every node of the lattice. Unlike dynamic fracture [41–43],
we aim to investigate the intrinsic fracture energy of
polymerlike networks, under conditions by which the crack
velocity approaches zero. Therefore, the network was
deformed quasistatically as previously mentioned and set
to be overdamped to mitigate potential dynamic effect. The
total damped energy throughout this process is recorded
and shown in Fig. 4(d). To provide a more quantitative
comparison, we present the total damped energy as a
function of layer number from the crack tip in Fig. 4(e).
In stark contrast to linear networks (dashed line) where
most of the energy is damped near the crack tip, the
polymerlike network (solid line) dissipates much more
energy through chains far away from the crack tip; this
eventually leads to the high ratio of Γ0=ΓLT. With the same
Uchain, a network made from polymerlike chains is much
tougher than that made from chains with linear elasticity.
Additionally, the ratio Γ0=ΓLT provides insight into the
spatial extent of the dissipation zone, quantified in terms of
the layers of chains (see Supplemental Material [31],
Sec. 2.3.2 for details).
Finally, in order to experimentally validate our findings,

we fabricated macroscopic architected materials that con-
sist of polymerlike strands. Specifically, each strand was
produced by laser cutting (model: Epilog Zing 24 60 W) an

Acetal Film (semi-clear white, 0.003” thick, McMaster-
Carr) into an initially folded ribbon. The ribbon-shaped
strand is designed to mimic the force-extension behavior of
polymer chains, with a soft initial unfolding followed by a
stiff stretching upon loading [44]. The former corresponds
to the “entropic stiffness,” while the latter corresponds to
the “energetic stiffness.” This results in a ratio of energetic
to entropic stiffness KE=KS ≈ 800 [Fig. 5(a)]. To test the
intrinsic fracture energy of this architected material, ribbon
strands are connected into a triangular lattice [Fig. 5(b)].
Tensile tests are performed to obtain the force-stretch curve
for the unnotched sample [Fig. 5(c), black solid curve] and
the critical height hc for the notched sample (red solid line,
see Supplemental Material [31], Sec. 3 for fabrication and
testing details). The measured intrinsic fracture energy of
the network is significantly higher than that predicted by
the Lake-Thomas model, with Γ0=ΓLT ¼ 5.57. Furthermore,
simulations of the network using the experimentally deter-
mined force-stretch curves for each strand match the
experimental results for both notched and unnotched sam-
ples, yielding a similar Γ0=ΓLT ¼ 5.61 with an error of only
0.7%. These experiments not only validate the accuracy of
our simulations but also demonstrate a new approach to
designing ultratough architected materials by engineering
the force-stretch response of individual strands.
In this Letter, we have demonstrated that the Lake-

Thomas model underestimates the intrinsic fracture energy
of polymerlike networks by more than an order of magni-
tude, even if the networks are purely elastic with latticelike
topology [45–47]. Our experimental and numerical analy-
ses reveal that this discrepancy arises from significant
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energy release and dissipation far from the crack tip, rather
than solely in the bridging chain. We show that this
nonlocal intrinsic fracture energy is strongly connected
to the high nonlinearity of the force-extension relation and
the abrupt breaking of polymer chains. Our findings
provide implications for the mechanics of real polymer
networks and designing metamaterials. For real polymer
networks, our results indicate that the released or dissipated
energy per broken chain is inherently larger than the work
to rupture a single chain. For metamaterials, our results
indicate that high toughness and resilience can be obtained
by controlling the nonlinear mechanics of the constituent
architected chains. Future directions could involve

exploring the relationship between the network structure
and the intrinsic fracture energy, as well as investigating the
effect of defects and inhomogeneities in the network on its
mechanical properties. Moreover, our findings could be
extended to other materials, such as ultratough structures,
soft matter and biomaterials, with implications for a wide
range of applications, including aircraft, space vehicles, and
tissue engineering.
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S1 Summary of Previous Experimental Data of End-linked
Poly(ethylene glycol) (PEG) Gels

The fracture energy of polymer networks has been studied across polymeric systems and com-

pared with the Lake-Thomas model. Since end-linked poly(ethylene glycol) gels are known

to have relatively small amount of defects and trapped entanglements, we herein summarize

some experimental data from these gels and compare them to the values predicted by the Lake-

Thomas model. The shear moduli and fracture energies of these PEG gels are summarized in

Table S1.

To make predictions based on the Lake-Thomas model ΓLT = MUchain, we estimate the

single-chain energy Uchain using the single-molecule force spectroscopy (SMFS) data from

Oesterhelt et al. (1) The modified freely jointed chain model (m-FJC) describes the relation-

ship between the force f and the end-to-end distance R of the polymer chain,

R

L0

=

[
coth(

f

KS

)− KS

f

]
(1 +

f

KE

), (S1)

where L0 is the unperturbed contour length of the polymer. The entropic KS and energetic KE

parameters determine the soft entropic elasticity at the low force regime and the stiff energetic
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elasticity at high force regime, respectively. For PEG polymers, KS = 5.86 pN and KE = 105

nN (1).

To estimate the average L0 of the elastically active chains of the PEG gels summarized in

Table S1, we use the phantom model (2) of network elasticity (functionality = 4) for the shear

modulus G and assume the reaction extent of cross-linking is 100%,

G = (ν − μ)kT =
1

2
νkT =

1

2

cRT

Mx

, (S2)

where ν is the number density of elastically active chains, μ is the number density of elastically

active junctions (μ = ν/2 when functionality is four), k is Boltzmann constant, T is absolute

temperature, c is the mass concentration the polymer, and Mx is the average molecular weight of

elastically active chains. Given the molar mass of PEG Kuhn segment M0 is 137 g/mol and the

Kuhn length b is 1.1 nm, (3) the average contour length of elastically active chains within each

PEG network can be calculated (L0 = Mx/137 g/mol × 1.1 nm). Combining L0 for different

gels with the single-chain breaking force ff and parameters KS and KE from before, the single-

chain energy Uchain is calculated for each gel using Eq. (S3) below (4). Eq. (S4) is obtained by

integrating the inverse function of Eq. (S1).

Uchain = L0KS

{
(
ff
KS

)

[
coth(

ff
KS

)− KS

ff

]
+ ln(

ff/KS

sinh ff/KS

) +
f 2
f

2KSKE

}
. (S3)

For ff � KS (synthetic covalent polymers usually have ff/KS ≈ 1000), an asymptotic form

can be used,

Uchain � L0KS

{
(
ff
KS

)

[
coth(

ff
KS

)− KS

ff

]
+

[
ln(

ff
KS

)− ff
KS

− ln 0.5

]
+

f 2
f

2KSKE

}
. (S4)

The single-chain breaking force ff for elastically active PEG chains are summarized in

Table S1. Note that the forces ff of gels by Wang et al. (5) and Barney et al. (6) are considered

to be substantially smaller than typical breaking force of C-C or C-O bonds (≈ 5 nN). This is

because the backbone of the elastically active chains contain weaker bonds. The gels made by
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Wang et al. (5) contain a triazole group on the chain backbone that make them prone to break

at the alpha C-C bond of the triazole group (≈ 3.8 nN), while the gels made by Barney et al. (6)

contain a C-S backbone bond that breaks at ≈ 2.5 nN (7). The forces ff of gels by Lin et

al. (8) and Akagi et al. (9) are considered to be close to 5 nN since all the chemical bonds on

the backbone are similarly strong as common C-C and C-O bonds. The values for Uchain for

elastically active chains in each gel are summarized in Table S1.

The areal number density M of elastically active chains for each gel can be estimated by

M ≈ 1
2
νR0 (10), where R0 ≈ bN 0.588 is the undeformed end-to-end distance of the elastically

active chains. The real chain scaling is applied based on the assumption that chains are at or

slightly above overlap under the preparation condition and that the solvent is a good solvent,

like water (11) (note that Wang et al. (5) and Barney et al. (6) prepared their gels in propylene

carbonate and dimethyl sulfoxide, respectively). Therefore, the fracture energy predicted by the

Lake-Thomas model can be calculated using ΓLT = MUchain. The estimated values of ΓLT are

summarized in Table S1. When compared to the experimental intrinsic fracture energy Γ0, the

ratios Γ0/ΓLT are all much larger than unity. This discrepancy motivated us to investigate the

relationship between single-chain energy and the tearing energy of the network.

We acknowledge that the energy Uchain was historically estimated by number of chemical

bonds times the bond dissociation energy of the chemical bonds (Uchain = N × UBDE) (6, 12).

However, a recent modification considering the mechanochemical reactivity of chemical bonds

suggests that Uchain could be better estimated by the total area under the force-displacement

curve of a polymer chain to its breaking point. We therefore estimate Uchain with this modified

method throughout the paper, which has been discussed in detail by Wang et al. (4, 5).

In the main text, we use a numerical simulation to show that the energy release from net-

works is non-local even for defect-free networks. Node dynamics damp the released energy

in dynamic simulations. We set the network to be overdamped while investigating the critical

3



tearing energy of the network to mitigate dynamic influences on crack propagation and reduce

the crack velocity towards zero. In real polymer networks, however, damping effects are more

complicated. To investigate damping effects, let us consider a simplified case where a chain in a

dilute solution is displaced from one end while the other is kept fixed. If the pulled chain end is

released in the bond stretching regime where the end-to-end distance is larger than the force-free

contour length, the critical damping coefficient of the monomer at the displaced end can be cal-

culated using cc = 2
√

Ksegmmon. The segment elasticity Kseg of a PEG Kuhn monomer is 150

N/m (1), while the mass mmon is 2.27 × 10-22 g (3). The calculated critical damping coefficient

is 3.7 × 10-10 Ns/m when the end-to-end distance is larger than the force-free contour length.

However, once the end-to-end distance becomes much smaller than the contour length of the

chain, entropic elasticity dominates. The critical damping coefficient of the monomer at the dis-

placed end in the entropic linear elastic regime can be estimated using cc = 2
√

3Ksegmmon/L0,

where L0 is the force-free contour length. For a typical chain with a contour length of 100 nm,

the critical damping parameter for a Kuhn monomer in the regime with entropic elasticity can

be estimated to be around 4 × 10-13 Ns/m.

On the other hand, the damping coefficient for a Kuhn monomer can be calculated based on

Stokes law c ≈ 6πηsb, where ηs is the solvent viscosity and b is the Kuhn length. Parameters for

PEG (b ≈ 1.1 nm) (3) in water (ηs ≈ 10-3 Pa/s) yield a damping coefficient around 10-11 Ns/m.

Hence, the damping ratio β = c/cc for the monomer at the displaced end is on the order of 10-1

when the end-to-end distance is larger than its contour length, and it is on order of 102 when the

chain enters the entropic linear elastic regime. We acknowledge that the damping of polymer

chains at high strain and high force is a complicated process. This simple calculation aims to

show that polymer networks are likely to be underdamped at high strain and highly overdamped

at low strain.
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Wang et al. (5) Lin et al. (13) Akagi et al. (9) Barney et al. (6)

G [kPa] 24.4 10.6 37 17.4

Γ0 [J/m2] 27.1 34 22 25.1

ff [nN] 3.8 5.0 5.0 2.5

Uchain [nN· nm] a 5.5 14.7 4.6 3.6

M [m−2] b 6.3 × 1016 3.9 × 1016 6.8 × 1016 4.8 × 1016

ΓLT [J/m2] c 0.35 0.57 0.31 0.17

Γ0/ΓLT ≈ 77 ≈ 60 ≈ 72 ≈ 150

Table S1: Experimental results of measured shear modulus G and intrinsic fracture energy Γ0 for

PEG gels and their corresponding estimates based on the Lake-Thomas model ΓLT = MUchaiSn.
aSingle-chain energy Uchain is estimated using single-molecule force spectroscopy (SMFS) data

by Oesterhelt et al. (1) and the storage moduli.bAreal number densities M are estimated based

on the moduli reported. cNote that about 90% of the gels is solvent.

S2 Numerical Simulation

This section outlines the implementation details of the simulator used to evaluate the intrinsic

fracture energy of the networks.

S2.1 Mathematical model

The polymer-like network is modeled by a system of connected nonlinear springs with stretch λ

and reaction force f relations characterized by the modified freely jointed chain model Eq. (S6).

If the initial length of the polymer chain is defined as R0, then the end-to-end distance R and

unperturbed contour length L0 can be expressed as a function of stretch as,

R = λR0, and L0 = λ0R0, (S5)

where λ0 is the crossover stretch when the polymer-like chain reaches its contour length and

transitions between entropic and energetic elasticity. The left-hand side of Eq. (S6) can therefore

be attained by dividing R/L0 to give λ/λ0. The model then yields a relation between force f

and stretch λ as,

λ

λ0

=

[
coth(

f

KS

)− KS

f

]
(1 +

f

KE

), (S6)
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which yields the constitutive law of each nonlinear spring used in the simulation. To further

capture the fracture of a polymer chain, the nonlinear spring is set to break at a force ff with

stretch λf . For PEG chains, prior experimental results indicate that KS = 5.86 pN and KE = 105

nN (1). We further set a breaking force of ff = 5 nN and λ0 = 5 to ensure a large polymer-

like stretch. PEG chains result in a KE/KS ratio of ∼1.8 × 104, which quantitatively shows

the stiffness difference between the energetic and entropic constitutive regimes. In Fig. S1, we

present stretch-force curves of polymer chains with different ratios of KE/KS. As shown in

Fig. S1, a larger ratio of KE/KS results in a stretch-force curve with accentuated nonlinearity.
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Figure S1: Force-stretch curves described by Eq. (S6) with different ratios of KE/KS. In all these cases,

the chain is set to break at λf = 5 and ff = 5 nN.

To simulate general 3D lattices consisting of n nodes and e edges, we describe the lattice

deformation through the coordinates of every node (xi, yi, zi), where i = 1, ..., n. The node

coordinates and their connectivity are saved in two matrices in MATLAB. At each loading step,

the total energy in the system can be expressed by summing the elastic energy of each edge or

spring as,

Utotal =
∑
i,j

∫ λij

1

f(λ′)dλ′, (S7)

where λij is the stretch of the edge connecting node i with j:

λij = r−1
0

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (S8)
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The coordinates of each node (xi, yi, zi) are then numerically obtained by minimizing Utotal

through solving

∂Utotal

∂xi

= 0,
∂Utotal

∂yi
= 0,

∂Utotal

∂zi
= 0, (S9)

using Newton’s method in MATLAB. Additionally, if λij > λf , which indicates that the edge

connecting nodes i and j has broken, the edge is removed from the lattice by permanently

deleting the corresponding rows and columns in the connectivity matrices.

In the simulation, clamped boundary conditions are applied to the top and bottom surfaces,

which quasi-statically stretch the sample from an initial height of h0 to a height of h in the z-

direction. This is realized by applying displacement boundary conditions on the top and bottom

nodes as,

zi = h, for i ∈ top nodes,

zi = z0i , for i ∈ bottom nodes,
(S10)

where z0i denotes the initial z position of the i-th nodes. In all simulations, the width of the

sample w0 in the x-direction is set to two times of its height h0 as w0 = 2h0. To limit boundary

effects on the left and right surfaces and enforce a pure shear loading condition, we further fix

their x-displacement via

xi = x0
i , for i ∈ left nodes,

xi = x0
i , for i ∈ right nodes,

(S11)

where x0
i denotes the initial x position of the i-th nodes. Eqs. (S9-S11) form a boundary value

problem that can be solved numerically.

S2.2 Quasi-static solver

As discussed in the previous subsection, the coordinates of every node (xi, yi, zi) fully describe

the state of the system. Therefore, all system variables can be written in vector form:

7



X = [x1, y1, z1, x2, y2, z2, ..., xn, yn, zn]
T . (S12)

The vector X is a 3n by 1 vector containing all the information we need to describe the defor-

mation of the lattice. To obtain X, we solve the nonlinear system of equations illustrated by

Eqs. (S9-S11), which can be written generally as,

F(X) = 0. (S13)

Note that the equation above presents the same governing equations as Eq. (S9).

Newton’s method is implemented to solve the governing equation (Eq.(S13)). The general-

ized Newton’s method is to find a root of a functional F defined in a Banach space. In this case,

the formulation is

Xl+1 = Xl −
[
J(Xl)

]−1

F(Xl), (S14)

where J(Xl) is the Jacobian matrix of the function F at Xl, and l is the iteration number. Instead

of computing the inverse of this matrix, one can save time by solving the following system of

linear equations:

J(Xl) (Xl+1 − Xl) = −F(Xl). (S15)

Starting with some initial guess X0, the next approximate solution Xl can be obtained iteratively.

The method ends when ‖Xl+1 − Xl‖ < δ, where δ is a defined accuracy requirement.

To simulate the quasi-static response of the system, the loading process is divided into P

steps, which gradually stretch the lattice. At each step, the state of the system X(p) is obtained

by solving Eq. (S13), where p = 1, .., P . Furthermore, we always use the solution of the current

step as the initial guess for the next step to accelerate convergence of the Newton’s method.
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S2.3 Dynamic solver

To simulate the dynamic response of the lattice, we add inertia and dissipation terms to the

previous governing equation Eqs. (S9), yielding:

Mẍi =
∂Utotal

∂xi

+ βMẋi,

Mÿi =
∂Utotal

∂yi
+ βMẏi,

Mz̈i =
∂Utotal

∂zi
+ βMżi,

(S16)

where M is the assigned pseudo-mass at each node and β is the damping coefficient. Similarly,

governing equations Eqs. (S16) can be written generally in vector form as

MẌ = F(X) + βMẊ. (S17)

Note that F(X) in the above equation is identical as the one in quasi-static problems (Eq. (S13)).

Eq. (S17) is solved via the Runge–Kutta method using the ode45 function in MATLAB.

As the initial condition, the lattice is loaded near fracture of the first bridging chain of

an artificial crack, which is the result of the quasi-static simulation. The bridging chain is

artificially broken (removed) at the crack tip, perturbing the system out of equilibrium at time

t = 0. The nodes accelerate, vibrate, and dissipate energy until a new equilibrium state is

achieved. We simulate the system from time t = 0 to t = t0, where t0 is selected to be large

enough such that the kinetic energy of the whole system approaches zero. The solution of

Eq. (S17) yields time evolution of the state variables, i.e., X(t), where t ∈ [0, t0].

S2.3.1 Distribution of dissipated energy

The energy dissipated D at node i can be calculated by integrating the work done by the damping

force over time,

Di =

∫ t0

0

βM
(
ẋ2
i + ẏ2i + ż2i

)
dt. (S18)
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The spatial distribution of Di around the crack tip demonstrates the dispersion of energy within

the sample following the fracture of one chain. Theoretically, the value of dissipation friction

β quantitatively affects the distribution of Di. For example, when β → 0 the released energy

will be emitted in the form of dynamic waves propagating circumferentially from the crack tip

to the periphery of the sample. However, as demonstrated in Fig. S2, the value of β does not

qualitatively alter the spatial distribution of Di given that β is large enough. In this case, the

whole system is overdamped, and the exact value of β does not make a difference. For the

present simulations, we pick β = 1.
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Figure S2: Dynamic simulation results for dissipation coefficient (a) β = 0.2, (b) β = 0.5, (c) β = 1, and

(d) β = 2. Energy dissipated at each node Di is illustrated by its color and size. There is no qualitative

difference between dissipation distribution for different β.
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S2.3.2 Size of dissipation zone

In this section, we aim to elucidate the scale of the dissipation zone within polymer-like net-

works using a network comprised of PEG chains with a damping coefficient β = 1. Fig. S3(a)

exhibits the distribution of dissipated energy for visualization of the extent of the dissipa-

tion zone. This illustration shares the same network structure presented in Fig. 4(d) of the

main manuscript and Fig. S2(c) yet offers a more detailed view. Specifically, the left panel of

Fig. S3(a) portrays the distribution over 120 layers, whereas the right panel provides a close-up

inspection of 50 layers. In contrast, Fig. 4(d) in the main manuscript only includes 16 layers. As

is evident from Fig. S3(a), the dissipation zone in polymer-like networks spans multiple layers,

extending far from the crack tip.
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Figure S3: Analysis of the dissipation zone in the polymer-like network with PEG chains. (a) The distri-

bution of dissipated energy is visualized across a broader range of layers than shown in the manuscript.

The circle represents a distance of Γ0/Wf = 28 layers from the crack tip, providing an estimate of the

dissipation zone size. (b) The dissipated energy plotted as a function of the number of layers from the

crack tip. The graph indicates that approximately 99.2% of the energy is dissipated within the span of

Γ0/Wf = 28 layers.

Given these observations, it is pertinent to question if the dissipation zone size can be pre-
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dicted. In the realm of nonlinear fracture mechanics, the ratio of intrinsic fracture energy, Γ0

[J/m2], and the material’s work to failure, Wf [J/m3], gives the flaw sensitively length Ls, which

is a relevant length scale (14). In highly stretchable network structures, the work to failure, Wf ,

is given by Wf = MUchain/L0, where Uchain represents the work to rupture a single chain, M

denotes the area density, and L0 is the unperturbed contour length of the chain. Notably, the

Lake-Thomas model postulates that ΓLT = MUchain, leading to the relationship Wf = ΓLT/L0.

Consequently, the flaw sensitivity length scale, Ls, can be expressed as

Ls = Γ0/Wf = (Γ0/ΓLT)L0. (S19)

In the context of the PEG chains analyzed here, this translates to a length scale of Γ0/Wf ≈
28L0. A representation of this span – equivalent to 28L0 – is depicted in Fig.S3(b), which

closely matches the observed size of the dissipation zone. To delve deeper, the dissipated en-

ergy was quantified against the layer number from the crack tip, as shown in Fig.S3(a). Results

indicate that 99.2% of the dissipated energy comes from within the first 28 layers (i.e., within

28L0), suggesting that the flaw sensitivity length Γ0/Wf can offer an estimate of the dissipation

zone scale. The implications of this discovery are profound, for the Ls parameter discussed

throughout could offer a tangible measure of the dissipation zone size. Furthermore, in scenar-

ios where Γ0 = ΓLT, it can be deduced that Ls = L0, implying that all dissipated energy is

attributed to the fracturing chain. In this case, all the energy is dissipated by the breaking chain,

which is a direct reflection of the Lake-Thomas model.

S2.4 Convergence

The value of intrinsic fracture energy measured through the pure-shear test is not affected by

the number of vertical layers, given that the sample is thick enough in y-direction. Note that

in this work, x-direction aligns with the horizontal width direction of the sample, y-direction

aligns with the vertical loading direction, and z-direction denotes the out-of-plane thickness
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direction. In this section, we investigate the number of vertical layers required for the measured

network intrinsic fracture energy Γ0 to converge. Here, we use a 2D triangular lattice as an

example; these results are transferable to other 2D and 3D network topologies. In Fig. S4, we

report the value of Γ0 as a function of vertical layer number for one network of linear chains

and two networks of polymer-like chains with different ratios of KE/KS. For the linear network

(Fig. S4a), Γ0 converges within 4 vertical layers and remains unchanged with increasing size.

This is consistent with the physical picture of the Lake-Thomas model, where all the energy is

released and dissipated on the layer on the crack tip. However, for the polymer-like networks

with KE/KS =1.8 × 103 (Fig. S4b, this value is one tenth that of PEG chains), the value

of Γ0 does not converge until about 100 vertical layers. As the polymer-like chains become

more nonlinear – as in the case of PEG chains with KE/KS =1.8 × 104 – the sample requires

more than 2000 vertical layers for the intrinsic fracture energy value to converge ((Fig. S4c).

These simulation results suggest that as the nonlinearity of chain constitutive behavior increases,

the number of vertical layers needed to achieve a converged value of intrinsic fracture energy

increases. This implies that the energy releasing and dissipation processes for polymer-like

chains are delocalized compared to the linear ones. In all simulation results presented in the

manuscript, we use samples with 4000 vertical layers to ensure convergence.

S2.5 Coarse-graining the network

As discussed in the previous section, we need to simulate networks with on the order of thou-

sands of layers to ensure convergence. As a case study, a 2D triangular network with 4000

layers consists of ∼40 million nodes. Since each node has two degrees of freedom (DOFs) in

2D space, the network contains ∼80 million degrees of freedom. The size of the resulting Jaco-

bian matrix J in Eq. (S14) is ∼80 million × 80 million. Currently, common desktops struggle

to handle systems with 1 million DOFs. Since the complexity of solving linear systems is at
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Figure S4: Convergence study for (a) linear network, (b) polymer-like network with KE/KS =1.8 ×
103 (one tenth of the PEG chain), and (c) polymer-like network with KE/KS =1.8 × 104 (PEG chain).

Linear network converged within 4 layers, polymer-like chain with KE/KS =1.8 × 103 converged at

around 100 layers, and polymer-like chain with KE/KS =1.8 × 104 converged at around 2000 layers.

least O(n2), our system with 80 million DOFs requires at least 6400 times more computational

resources than a system with 1 million DOFs. Memory overflow is also a challenge for this kind

of problem; moreover, our simulations must repeatedly solve such linear systems ∼1000 times.

Therefore, it is impractical to directly simulate a network of this size.

Full network: 23057 nodes Coarse-grained network: 1047 nodes

Figure S5: Hierarchically coarse-grained network compared to its corresponding full network. The thick-

nesses of the edges are proportional to their relative stiffnesses. The coarse-grained method decreases

the total node number from 23057 to 1047.

To accelerate the simulation of large size networks, we developed a hierarchical coarse-

grained method to reconstruct the network with significantly fewer DOFs. Near fracture of the

bridging chain, the network is most inhomogeneous near the crack but becomes more homo-
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geneous with increasing distance from the crack tip. Since chains far from the crack tip do

not drastically vary within their local neighborhood, a coarser lattice can equivalently repre-

sent the effect of these neighborhoods on the continuum level. As an example, a 2D triangular

network with h0 = 100 layers and w0 = 200 layers can be reconstructed with a few levels of

coarse-grained lattices as shown in Fig. S5. In the coarse-grained network, the relative stiffness

of chains is set to be proportional to their length (represented by line thicknesses in Fig. S5).

This ensures that the coarse-grained network has the same bulk mechanical performance as the

full network. A full network consisting of 23,057 nodes can be hierarchically coarse-grained to

possess only 1047 nodes. The coarse-grained model still accurately predicts the critical stretch

at which the first chain breaks. Although the coarse-grained model cannot accurately predict

the full fracture process, it is sufficient to yield an accurate assessment of hc, as defined for the

pure-shear test.

To substantiate our claims, we carry out a pure shear test using numerical simulations on two

types of networks with h0 = 100 layers and w0 = 200 layers: a full network and a hierarchical

coarse-grained network. When subjected to a notched test, the full network generates hc =

495.6r0 (note that r0 denotes the rest length of each edge), while the coarse-grained network

exhibits hc = 495.1r0, reflecting a marginal error of just 0.1%. Further, when evaluating the

fracture energy, the full network demonstrates a ratio of Γ0/ΓLT = 18.31, whereas the coarse-

grained network yields a ratio of Γ0/ΓLT = 17.91, implying a minor error of 2.1%. These

results compellingly validate that the coarse-grained network can be reliably used to predict the

intrinsic fracture energy of the full network.

In Fig. S6, we present the actual coarse-grained triangular network we used for simulations.

The network has a size of h0 = 4000 layers by w0 = 8000 layers, with a total of 44,847 nodes

and 89,694 DOFs. Note that the full network with the same size would require 40 million nodes,

so our hierarchical coarse-grained method decreases the required number of DOFs by 99.9%.
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Figure S6: The coarse-grained 2D triangular network used in our simulations. The network has a size of

h0 = 4000 layers by w0 = 8000 layers, with 44,847 total nodes.

The coarse-grained network provides a moderate matrix size that can be easily computed by

common computers. Each iteration of Newton’s method – including the assembly of Jacobian

matrix and solving Eq. (S14) – costs a few seconds. The whole simulation of the fracture of

a h0 = 4000 layer network typically takes 15−20 minutes to complete on a standard desktop

with Intel Core i9- 12900K.
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S3 Fabrication and Testing

S3.1 Fabrication

Specimens were fabricated by laser cutting Wear-Resistant Easy-to-Machine Acetal Films (12”

x 12” x 0.003”) (McMaster-Carr part number: 5742T11) using an EpilogLaser Zing 24 60W

laser machine. The pattern was designed using CorelDraw with 12 layers of triangular repeating

units and 27 strands per layer (Fig. S7). Each strand has a “zigzag” structure that can unfold

to provide an initial soft bending, followed by a stiff stretching due to the deformation of the

material (15). This large discrepancy between stiffness mimics the force-extension behavior

of polymer chains. The distance between the laser head and the acetal film was calibrated

as instructed in the machine’s operating manual to ensure sharp focus. The parameters were

chosen to be 10% of the laser power, 10% of the frequency, and 100% of the speed. Four

identical samples in total were cut to perform the measurement of energy release rate. For each

sample, four 1/16” acrylic sheets were cut and glued onto the front and the back of the uncut

portion to act as rigid boundary (manuscript figure 5b), which was clamped onto the mechanical

testing machine.

S3.2 Testing

Mechanical tests were performed on ZwickiLine tensile testing machine (Zwick Roell). To mea-

sure the fracture energy Γ0, we conducted uniaxial extension on an unnotched sample at a load-

ing rate of 100 mm/min (Fig. S7), as shown by the solid black line in Fig. 5c of the manuscript.

Using the obtained force-stretch curve, we inversely identified the effective force-stretch curve

for each strand (the curve shown in Fig. 5c of the manuscript) such that the simulation results

match with the experimental measurements. For the other three samples, we introduced a notch

at the same position on each sample to yield three identical notched samples. Uniaxial tensile

tests were performed on the three notched samples at a loading rate of 100 mm/min. Since the
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Figure S7: The laser cut network glued with rigid acrylic boundary is clamped onto the Zwick Roell

tensile tester (left) and stretched (right) to record the force-stretch curve

rupture of strands is uncontrolled when a notched sample is loaded to the fracture event, we pre-

set a critical stretch of 2 and consider the bridging strands to have “ruptured” when the whole

network reaches the critical stretch. The energy release rate at the stretch of 2 is considered to

be the intrinsic fracture energy Γ0 of the network. By integrating the force-extension curve of

unnotched sample to the stretch of 2 times to the initial height of the network h0 = 207.8 mm,

we obtained the intrinsic fracture energy for the network to be Γ0 = 321.2 mJ.

To compare with the Lake-Thomas model, the stretch of the bridging strand at the crack

tip is measured using calipers when the notched sample reached the critical stretch of 2. Three

bridging strands for three notched samples were measured to be 37.85 mm, 38.25 mm, and

18



37.33 mm when the sample stretch reached 2. Since the undeformed strands each have a length

of 20.00 mm, the average critical stretch for the bridging strands was calculated to be 1.89. By

integrating the force-stretch curve of a single strand up to a stretch of 1.89 and multiplying this

integration by M = 27 (the number of strands in a layer), the Lake-Thomas Model estimated

the fracture energy ΓLT = MUchain ≈ 57.7 mJ. Hence, the ratio Γ0/ΓLT = 5.57 is significantly

larger than unity but consistent with our model’s expectation that a significant amount of energy

would be released from far from the crack tip.
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