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a b s t r a c t

The emerging magnetic soft continuum robots (MSCRs) – a type of slender magnetoactive soft rods
that can be steered remotely by magnetic fields – hold great potential in interventional treatments of
cardiovascular diseases. While forming stable contact between the distal tips of MSCRs and targeted
lesions is critical in many applications such as cardiac ablations, existing designs of MSCRs have not
systematically considered their contact with the external environments. In this work, we present a
set of designs and optimization of MSCRs that can apply forces in contact with the environments
based on theoretical modeling and numerical analysis. We propose to design MSCRs with nonuniform
magnetization and nonuniform rigidity patterns so that they can achieve high steerability in the
confined anatomy and apply sufficient contact forces at the targeted lesions. We first adopt the
theory of hard-magnetic elastica to describe the large deflection of the MSCR with contact forces
at the distal tip. We then discretize the MSCR using the finite difference method and solve for the
deformation and contact forces numerically. The developed finite difference method is validated by
both analytical solutions and finite element simulations. We further adopt the genetic algorithm to
achieve an optimized design of the MSCR that potentially has a high steerability and capability of
applying forces. Offering a facile route to analyze and optimize MSCRs with contact forces, the present
work may facilitate the design of MSCRs for applications in endovascular settings.

© 2022 Published by Elsevier Ltd.
1. Introduction

Cardiac arrhythmia such as atrial fibrillation is an irregular
eart rhythm that has been an increasing epidemic and public
ealth challenge [1,2]. To recover the normal heart rhythm, heat
r cold energy is usually delivered to create tiny scars in the heart
hamber to block abnormal electrical signals in the clinic, referred
o as cardiac ablation [3]. Currently, most cardiac ablations are
inimally invasive, in which the surgeon inserts a thin tube, also
nown as a mechanical catheter, into the heart chamber through
he femoral artery of the patient, allowing the targeted lesion
o be ablated once the catheter tip is in stable contact with the
esion. The mechanical catheter, however, is often limited by its
ow steerability in accessing hard-to-reach areas inside the con-
ined anatomical environment and unprecise control of contact
orces by the surgeons’ hands. Excessive contact force may cause
ossible cardiac perforation, while insufficient contact force may
ead to unsuccessful scaring [4,5]. To overcome these limitations,
remendous efforts have been dedicated to developing actively
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steerable catheters that can remotely perform cardiac ablations
in a robotic-operated manner [6–9]. Particularly, due to the un-
tethered and biocompatible nature of magnetic fields [10,11],
an emerging minimally invasive platform that utilizes magnetic
fields to control magnetoactive catheter-like rods magnetic soft
continuum robots (MSCRs) has shown great promises [12–15]
(Fig. 1).

An MSCR usually consists of a magneto-active distal portion
that can be bent by applying an actuation magnetic field and a
nonmagnetized portion that controls the MSCR’s advancing and
retraction (Fig. 1a). To guarantee a successful cardiac ablation, an
MSCR is supposed to first steer to the targeted lesion through
blood vessels and then make stable contact with the targeted
lesion to create scars during the ablation [16]. The steerability
of an MSCR in the confined anatomical environment is largely
determined by the bending angle of its distal portion (denoted
as θ L

1 in Fig. 2a), and the stability of the contact can be quantified
by the contact force on the distal tip from the heart wall (denoted
as R in Fig. 2b). Quantitative modeling of MSCRs in magnetic
fields is of great importance for the understanding and control
of magnetically-assisted cardiac ablation [17–24]. For example,
Nelson and colleagues have applied the Cosseral rod theory to
investigate the magnetically coupled behavior of a catheter with

https://doi.org/10.1016/j.eml.2022.101604
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Fig. 1. (a) Schematic illustration of cardiac ablation using a magnetic soft continuum robot (MSCR) steered by the magnetic field B. A contact force R is applied by
he heart wall on the tip of the MSCR to guarantee stable contact during ablation; the contact force R can be tuned by varying the applied magnetic field B. (b)–(c)
chematic illustration of the magneto-active distal portion of two MSCRs fabricated (b) by embedding rigid magnets or (c) by dispersing hard-magnetic particles in
olymer matrices, respectively.
Fig. 2. A contact force R is applied on the distal tip of the MSCR in two steps. (a) In Step 1, the distal tip of the MSCR reaches the targeted location under a uniform
agnetic field B1 . The bending angle of the distal tip of the MSCR is denoted as θ L

1 . (b) In Step 2, the targeted location applies the contact force R, as the magnetic
ield strength increases to B2 while maintaining the same field direction as B1 . The objective functions to optimize the MSCR are bending angle θ L

1 and the magnitude
f contact force R.
a

mbedded rigid magnets [17] and designed a steerable mag-
etic sheath for cardiac ablation [18]. The contact forces between
he magnet-tipped catheters and the environments have been
valuated as well [25,26]. Recently, MSCRs have been designed
nd optimized with a hard-magnetic elastica theory [27,28] and
enetic algorithm [29] to achieve high steerability without con-
idering contact forces. To the best of our knowledge, the design
nd optimization of MSCRs that can achieve both high steerability
nd stable contact forces at the targeted location have not been
ystematically investigated.
In this work, we present a set of theoretical modeling, nu-

erical analysis, and optimization of MSCRs with contact forces
nder actuation magnetic fields. We propose to design MSCRs
ith nonuniform magnetization and rigidity patterns that can
chieve both high steerability through tortuous blood vessels and
he capability of applying stable contact force at the targeted
ocation. We first adopt the theory of hard-magnetic elastica to
escribe the large deflection of the MSCR with contact forces
2

at the distal end taken into account. We then discretize the
MSCR using the finite difference method and solve for the de-
formation and contact forces numerically. The developed finite
difference method is validated by both analytical solutions and
finite element simulations. Enabled by the genetic algorithm, the
optimized MSCR gives both a stable contact force and a higher
steerability for cardiac ablation than existing MSCRs.

2. Modeling of MSCRs with contact forces

2.1. MSCRs with contact forces and their bending angles

In this study, we propose to provide precise control of contact
forces between MSCRs and targeted lesions by tuning the applied
magnetic field in two steps (Fig. 2). In Step 1, a uniform magnetic
field B1 is applied to guide the MSCR to the targeted location. A
larger bending angle at the distal tip (denoted as θ L

1) indicates
higher steerability of the MSCR. After contact, we assume a
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Fig. 3. Designing MSCRs by programming their magnetization and rigidity patterns in the distal portion. (a) Each voxel is encoded with a specific remanent
magnetization M by tuning its particle volume fraction φ. The remanent magnetization of all voxels is along the axial direction pointing to the distal tip of
he MSCR. (b) The normalized magnetization strength M(φ)/M0 (left) and shear modulus G(φ)/G0 as a function of particle volume fraction φ.
in connector is formed between the distal tip and the targeted
ocation. In Step 2, when the magnetic field strength increases to
2, the heart wall applies a contact force (denoted as R) on the
istal tip of the MSCR. Therefore, by tuning the magnetic field
1, the MSCR can reach a set of spatial locations of interest and

the contact force R can be precisely controlled by varying the
magnetic field B2. Note that B1 and B2 have the same direction
(angle denoted as ϕ) so that the distal tip always contacts the
targeted location during Step 2.

2.2. Design parameters for MSCRs with contact forces

The distal portions of existing MSCRs can be fabricated by
embedding one or more rigid magnets [25,30–32] (Fig. 1b) or
by dispersing hard-magnetic particles [29,33] (Fig. 1c) in poly-
mer matrices (e.g., polyurethane (PU) and polydimethylsiloxane
(PDMS)). Our model of the magnetoactive distal portion of the
MSCR accounts for hard-magnetic particles, rigid magnets, or a
combination of both (Fig. 3a). The widely adopted hard-magnetic
particles and rigid magnets in MSCRs are based on neodymium–
iron–boron (NdFeB) [34–36]. Once saturated by a strong magnetic
field (∼3 T), hard-magnetic particles can retain a remanent mag-
netization along the direction of the saturation magnetic field.
Note that a typical actuation of MSCRs requires the magnetic field
strength of at most 80 mT [33] that is much lower than the sat-
uration field strength (∼3 T) [28,37,38]. Therefore, the remanent
magnetization strength of saturated hard-magnetic materials is
independent of the actuation magnetic field.

It has been reported that a contact force within the range of
0.1–0.4 N is desired to improve the procedural outcome of cardiac
ablation [4,5,39]. We aim to optimize the steerability of an MSCR
by maximizing its bending angle θ L

1 while satisfying that the
magnitude of contact force 0.1 N ≤ R ≤ 0.4 N by increasing the
magnetic field strength up to 80 mT, i.e., B2 = 80 mT (Fig. 2). We
propose to optimize the MSCR by tuning its magnetization and
rigidity patterns (Fig. 3a). The MSCR can be segmented into 10
voxels, and each voxel is encoded with a specific particle volume
fraction φ of the hard-magnetic particle. The rigid magnet can be
equivalently treated as a special case with a 100% volume fraction
of hard-magnetic particles. Therefore, the design parameters are
φ of 10 voxels, denoted as φi(i = 1, 2 . . . 10). Applying a strong
saturation magnetic field along the axial direction of the MSCR
will produce a remanent magnetization M in each voxel. By
tuning φ, the magnetization strength M and the shear modulus
G of each voxel can be effectively altered (Fig. 3b). On the one
hand, the magnetization strength is linearly proportional to φ,

i.e., M = M0φ, where M0 denotes the magnetization strength

3

of the hard-magnetic particle. On the other hand, following the
Mooney model [40], the shear modulus of the voxel follows
G = G0 exp [2.5φ/(1 − 1.35φ)] where G0 represents the shear
modulus of the polymer matrix. Notably, when φ = 1, it refers
to a rigid magnet with M = M0 and G ≫ G0. Furthermore, the
maximum φ for dispersed hard-magnetic particles in polymer
matrices is found to be 0.4, above which MSCRs may not be
consistently fabricated [33]. Therefore, in this study, we set that
φi ∈ {0, 0.1, 0.2, 0.3, 0.4, 1} in which 0 represents pure polymer
while 1 denotes the rigid magnet. In total, there can be 610

=

60466176 possible designs. The optimization problem can be
mathematically expressed as

Maximize: θ L
1 (φ)

subject to

⎧⎨⎩
φi ∈ {0, 0.1, 0.2, 0.3, 0.4, 1}
0.1 N ≤ R(φ) ≤ 0.4 N
B1 ≤ B2 = 80 mT

where φ = [φ1, φ2, . . . , φ10]

where .

2.3. Theory of hard-magnetic elastica with contact forces

MSCRs are usually in the form of a cylindrical rod with length
and cross-sectional diameter of the distal portion denoted as L
and D, respectively. To describe their large deflection in a mag-
netic field, we adopt the theory of hard-magnetic elastica [27].
We depict the deformed distal portion of an MSCR in Step 1
and Step 2 in Fig. 4a and Fig. 4b, respectively. The MSCR is
magnetized along its axial direction and the magnetization vector
can be expressed as M = Mex in the reference configuration.
When subject to the uniform magnetic fields B1 and B2, the distal
portion deforms under distributed magnetic torque τ1 = F1M ×

B1 and τ2 = F2M×B2, where F1 and F2 denotes the deformation
gradient in Step 1 and Step 2, respectively, and × represents the
cross-product operation.

The elastica model describes the large deflection of a slender
rod by its centerline and assumes that cross-sections of the rod
remain perpendicular to its centerline during deformation. The
cross-sectional area of the rod A = πD2/4 and the length of
the rod centerline L are assumed to be constant [41,42]. Here,
we take the elastica in Step 1 as an example. The centerline can
be parameterized as a spatial curve θ1 = θ1(s) where s and θ1
represents the arc length and tangential angle at the spatial point
P on the elastica, respectively (Fig. 4a). Then the curvature at the
point P can be calculated as

κ1(s) =
dθ1 (1)

ds
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Fig. 4. Modeling the distal portion of an MSCR deforming in two steps. (a) In Step 1, the distal tip reaches the targeted location. Upper panel: Schematic illustration
of the distal portion of an MSCR reaching the targeted location in the magnetic field B1 under distributed magnetic torque density τ1 . The length and diameter of
he distal portion is denoted as L and D, respectively. Middle panel: The deformed distal portion can be characterized by a spatial curve θ1(s), referred to as elastica,
here s and θ1 represents the arc length and tangential angle at the spatial point P, respectively. The bending angle and Cartesian coordinates of the distal tip is
enoted as θ L

1 and (xL, yL), respectively. Bottom panel: The finite difference method discretizes the elastica into K elements with equal arc length ∆s = L/K . (b) In
tep 2, the magnetic field strength increases to B2 . Upper panel: The targeted location exerts a contact force R at the distal tip of the MSCR. Middle panel: The
patial curve of the deformed distal portion changes to θ2(s) under the magnetic field B2 . Bottom panel: Discretization of θ2(s) with contact force R at the distal tip.
w
t
c
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he deformation gradient can be expressed as

1 = cos θ1ex ⊗ ex + sin θ1ex ⊗ ey − sin θ1ey ⊗ ex
+ cos θ1ey ⊗ ey + ez ⊗ ez (2)

sing the Cartesian coordinate basis vectors (ex, ey, ez), where
denotes dyadic products between two vectors. The internal

ending moment in the distal portion can be written as EIκ1(s),
here EI = 3πGD4/64 is the bending stiffness.
The targeted location is denoted as (xL, yL) in Fig. 4. In Step 1,

he distal tip is free of external forces. Thus, the bending moment
t an arbitrary point P(x, y) is balanced by the summation of
istributed magnetic torque τ1 from point P to the distal tip, i.e.,

Ik1 (s) = EI
dθ1
ds

=

∫ L

s
τ1Ads (3)

Solving Eq. (3) with clamped boundary condition θ1 = 0 at s = 0
yields the deformed elastica θ (s). Then the Cartesian coordinates
1

4

of the point P and the distal tip can be calculated⎧⎪⎪⎨⎪⎪⎩
x =

∫ s

0
cos θ1 (η) dη

y =

∫ s

0
sin θ1 (η) dη

;

⎧⎪⎪⎨⎪⎪⎩
xL =

∫ L

0
cos θ1 (η) dη

yL =

∫ L

0
sin θ1 (η) dη

(4)

In Step 2, the contact force R also exerts a bending moment at
point P. Therefore, the equilibrium equation can be rewritten as

EI
dθ2
ds

=

∫ L

s
τ2Ads − R sinβ

(
xL − x

)
− R cosβ(yL − y) (5)

here R is the magnitude of the contact force and β represents
he angle between R and x-axis (Fig. 4b). Since the distal tip
ontacts the targeted location (i.e., (xL, yL) in Eq. (4)) in Step 2,
e have boundary conditions at the distal tip in Step 2:

xL =

∫ L

0
cos θ2 (η) dη

yL =

∫ L

sin θ2 (η) dη
(6)
0
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ogether with the clamped boundary condition θ2 = 0 at s = 0,
we can solve Eq. (5) for the deformed elastica θ2(s), the contact
force R, and its direction β .

2.4. Finite difference method

For a general nonuniform magnetization pattern, Eqs. (3) and
(5) can be numerically solved by the finite difference method
[29]. The entire elastica is first discretized into K elements of
equal length. When K is large enough, the infinitesimal arc length
ds can be approximated by the straight line, i.e., ds ≈ ∆s = L/K
and the magnetization of each element is also a constant. In
Step 1, the curvature at point P can be linearized as

κ1(s) =
dθ1
ds

≈
θ i
1 − θ i−1

1

∆s
(7)

where θ i
1 is the slope of the ith element (i = 1, 2, . . . , K ) of the

elastica θ1(s) and θ0
1 = 0 corresponds to the clamped end at s = 0.

Then Eq. (4) can be recast as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x =

i−1∑
q=1

cos θ
q
1∆s

y =

i−1∑
q=1

sin θ
q
1∆s

;

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xL =

K∑
q=1

cos θ
q
1∆s

yL =

K∑
q=1

sin θ
q
1∆s

(8)

The distributed magnetic torque density on the ith element in
the magnetic field B1 can be calculated as τ i

1 = F1Mi × B1 =

MiB1 sin(ϕ−θ i
1)ez where Mi = M0φi is the magnetization strength

of the ith element. Then Eq. (3) can be written as

(EI)i
θ i
1 − θ i−1

1

∆s
=

K∑
q=i

AMqB1 sin
(
ϕ − θ

q
1

)
∆s, i = 1, 2 . . . K (9)

By setting i = 1, 2 . . . K in Eq. (9), we can have K equations
that can be used to solve K unknowns, i.e.,

[
θ1
1 , θ2

1 , . . . ., θK
1

]
.

Thereafter, the Cartesian coordinates of the arbitrary point P(x, y)
and the distal tip (xL, yL) can be obtained by Eq. (8).

Next, the equilibrium equation in Step 2 (i.e., Eq. (5)) can be
discretized to be

(EI)i
θ i
2 − θ i−1

2

∆s
=

K∑
q=i

AMqB2 sin
(
ϕ − θ

q
2

)
∆s−

R sinβ

K∑
q=i

cos θ
q
2∆s − R cosβ

K∑
q=i

sin θ
q
2∆s, i = 1, 2 . . . K

(10)

nd the coordinates of the distal tip (Eq. (6)) can be rewritten as

xL =

K∑
q=1

cos θ
q
2∆s

yL =

K∑
q=1

sin θ
q
2∆s

(11)

By setting i = 1, 2 . . . K in Eq. (10), we can have K equations.
Together with another 2 equations in Eq. (11), we can solve
K +2 unknowns in Eq. (10), i.e.,

[
θ1
2 , θ2

2 , . . . ., θK
2 , R, β

]
. It is worth

noting that for a general nonuniform magnetization pattern, the
deformed elastica θ1(s) and θ2(s) are different. Validation of the
finite difference model is provided in Appendix.
5

3. Optimization by genetic algorithm

The theory of hard-magnetic elastica and finite difference
method provide an effective approach for solving the bending an-
gle (θ L

1) of the MSCR in Step 1 and the magnitude of contact force
(R) at the targeted location in Step 2. We then adopt the genetic
algorithm to optimize the magnetization and rigidity pattern by
tuning φi(i = 1, 2 . . . 10) (Fig. 5a). Here we choose a represen-
tative polymer matrix polydimethylsiloxane (PDSM) with shear
modulus G0 = 400 kPa and NdFeB-based hard-magnetic particles
with remanent magnetization M0 = 640 kA/m [33]. The diameter
and length of the distal portion are selected as D = 3 mm and
L = 3 cm, respectively, which are typical values for MSCRs.
First, the first generation of 100 MSCRs are randomly assigned
with φ ∈ {0, 0.1, 0.2, 0.3, 0.4, 1}. For each MSCR in the first
generation, by setting B2 = 80 mT and looping B1 (0 ≤ B1 ≤

B2), we can calculate different bending angles θ L
1 in Step 1 and

the corresponding contact forces in Step 2. Then the maximum
θ L
1 that satisfies 0.1 N ≤ R ≤ 0.4 N will be recorded as the
objective function of the MSCR. If the contact force does not
satisfy 0.1 N ≤ R ≤ 0.4 N, the objective function of the MSCR
will be set to be zero. Next, by stochastic universal sampling [29],
we can select 100 MSCRs from the first generation. Note that
the MSCR with a larger bending angle has a higher chance to be
selected (even multiple times), while the MSCR with a smaller
bending angle may be eliminated during the stochastic universal
sampling. Thereafter, the selected 100 MSCRs will reproduce the
second generation of 100 MSCRs by 5% elitism, 85% crossover,
and 10% mutation. 5% elitism means that the 5 MSCRs with the
largest θ L

1 in the first generation will directly propagate to the
second generation without changing the magnetization pattern
(e.g., MSCR denoted as R1 in Fig. 5a). 85% crossover means that,
in the remaining 95 first-generation MSCRs, we randomly choose
85 MSCRs and swap some of their voxels. For example, MSCRs
denoted as R2 and R3 exchange the 1st and 100th voxels in
Fig. 5a. 10% mutation means that each MSCR in the remaining
10 MSCRs will randomly alter some of its voxels. For example,
MSCR denoted as R4 alters its 2nd voxel in Fig. 5a. The above
optimization process of stochastic universal sampling followed by
elitism, crossover, and mutation multiple times will be repeated
over generations until the difference between the largest bending
angle and the mean value of the all bending angles in a certain
generation of MSCRs is smaller than the tolerance (10−3).

Fig. 5b shows the evolution of the highest and mean values
of the bending angles of 100 MSCRs over generations using the
genetic algorithm. It shows that after 35 generations, the bending
angles of 100 MSCRs reaches the maximum and optimal value
θ L
1 = 161◦. The optimized magnetization pattern is plotted in
Fig. 5c in which the optimal particle volume fraction of 10 voxels
is φ = [0.2, 0, 1, 1, 1, 0, 1, 0, 1, 1]. By setting ϕ = 180◦, we
can plot the deformed distal portion of the optimized MSCR
under magnetic fields B1 = 10, 20, 30, 45 mT in Fig. 5d. We
also performed finite element analysis of the optimized MSCR
using Abaqus 2017 standard. The interaction between the mag-
netic field and distributed hard-magnetic particles is simulated
by implementing a user-element developed by Zhao et al. [28].
The finite element results under different magnetic fields B1 =

10, 20, 30, 45 mT and ϕ = 180o (shown by blue curves in
Fig. 5d) agree well with the results by finite difference method,
validating the finite difference method when the magnetization
is nonuniform. By setting B2 = 80 mT, we present the magnitude
of contact force R as a function of B2 − B1 in Fig. 5e. It is found
that the contact force R ≥ 0.1N when B1 ≤ 45 mT. Therefore, the
maximum bending angle θ L

1 = 161◦ is achieved when B1 = 45 mT
as shown in Fig. 5d.

Next, we compare the bending angles of the optimized MSCR

and existing MSCRs in the literature in Fig. 6. We first analyze the
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Fig. 5. Optimization of the MSCR with contact forces by genetic algorithm. (a) Schematic flowchart of the optimization process of MSCRs by genetic algorithm.
SCRs with a large bending angle and contact force 0.1 N ≤ R ≤ 0.4 N are selected by the stochastic universal sampling to reproduce the next generation via
litism, crossover, and mutation. (b) The highest and mean values of the bending angle of 100 MSCRs over generations. The bending angle reaches the maximum and

optimal value of θ L
1 = 161◦ after 35 generations. (c) The hard-magnetic particle distribution of the optimized MSCR at generation 35. (d) Deformed profiles of the

ptimized MSCR in Step 1 under magnetic field B1 = 10, 20, 30, 45 mT and ϕ = 180◦ (e) The magnitude of contact force R as a function of B2 − B1 . The maximum
ending angle θ L

1 = 161◦ is achieved when B1 = 45 mT and ϕ = 180◦ .
ending angle of MSCRs by uniformly dispersing hard-magnetic
articles in polymer matrices. We found that contact forces of
SCRs with φ = 0.2 [33] and φ = 0.4 are smaller than 0.1 N.
ext, we calculate the bending angles of four MSCRs with nonuni-
orm distribution of hard-magnetic particles. MSCRs with linearly
nd parabolically decreasing particle concentration from 0.4 to
also have contact forces smaller than 0.1 N, while the MSCR
ith linearly and parabolically increasing particle concentration

rom 0 to 0.4 shows the maximum bending angle of 93◦ and
7◦, respectively. The bending angles of MSCRs with contact force
< 0.1 N are meaningless due to unstable contact, and thus are
ot shown in Fig. 6.
Thereafter, we analyze the bending angles of MSCRs with

mbedded magnets. We first consider a single magnet embedded
t the distal tip [25,32] with magnetic polarity pattern φ =

0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. The bending angle is calculated as 96◦.
ext, we analyze the MSCR with two magnets embedded in
6

the distal portion [30,43] with magnetic polarity patterns φ =

[0, 0, 0, 0, 1, 1, 0, 0, 1, 1]. The bending angles is found as 145◦. In
contrast, enabled by the genetic algorithm, the optimized MSCR
shows a bending angle of 161◦, which is much larger than existing
MSCRs. Notably, if we replace the voxels with φ = 0.2 in
the optimized design to pure polymer (φ = 0), the resultant
MSCR gives a maximum bending angle of 160◦, suggesting that
embedding rigid magnets in polymer matrices can give MSCRs
with high bending angles and stable contact.

4. Conclusions

In summary, we report a strategy for the design and opti-
mization of MSCRs that can have both a large bending angle
and sufficient contact force at the targeted location. Different
from existing MSCRs with either dispersed magnetic particles
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Fig. 6. Comparison of bending angles of the optimized MSCR and existing MSCRs in literature. The magnetic field strength B2 = 80 mT and ϕ = 180◦ are adopted.
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r embedded rigid magnets in the polymer matrices, we pro-
ose to design MSCRs that can have both dispersed magnetic
articles and embedded rigid magnets. We have developed a
et of theoretical and numerical models to calculate the contact
orces between MSCRs and targeted lesions actuated by uniform
agnetic fields. With this method, we further adopt the genetic
lgorithm to optimize the MSCR. The optimized MSCR has an
nintuitive magnetic polarity pattern by combining rigid magnets
nd dispersed magnetic particles. The optimized MSCR can give a
igh bending angle (e.g., up to 161◦) with sufficient contact forces
e.g., 0.1∼0.4 N), implying potentially high steerability inside the
onfined anatomical environment and the capability of achieving
table contact with the targeted lesion in cardiac ablation. It
hould be noted that this work provides a simplified model of
ontact forces between the MSCR and the static environments.
he dynamic conditions (e.g., heartbeat, blood flow, etc.) inside
he heart chamber for realistic applications of magnetically con-
rollable cardiac ablation should be further considered in future
orks. In addition, the current model assumes a pin connector
etween the distal tip and the environment. However, future
tudies may further consider friction and sliding between them.
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ppendix A. Validation of finite difference method

When φ is constant throughout the distal portion, i.e., the
agnetization pattern is uniform M ≡ Mex ≡ M0φex, analytical
olutions to Eqs. (3) and (5) can be derived. Therefore, we can
alidate the finite difference method by analytical solutions.

.1. Analytical solutions to Eq. (3)

In Step 1, Eq. (3) can be explicitly expressed as

I
dθ1
ds

=

∫ L

s
AMB1 sin(ϕ − θ1(η))dη (A.1)

Differentiating Eq. (A.1) with respect to s yields the 2nd-order
governing equation

EI
d2θ1

+ AMB1 sin(ϕ − θ1) = 0 (A.2)

ds2
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w

T
t

T

d

I

L

Fig. A.1. Analytical solutions when the particle volume fraction φ is constant. (a)–(b) Generalization of the distributed magnetic torque into an equivalent point
force acting on the distal tip of a hard-magnetic elastica. Equivalent loading condition (a) f1 = AMB1 and (b) f2 = AMB2 yields the same deformed elastica in Step 1
and 2, respectively. (c)–(d) Comparison of (c) the deformed elastica in Step 1 and (d) contact forces in Step 2 between analytical solutions and results by finite
difference method.
w

T

T
o

With the help of chain rule, Eq. (A.2) can be expressed in the
following integral form:∫

d2θ1
ds2

dθ1
ds

ds = −

∫
Q1 sin(ϕ − θ1)ds (A.3)

here Q1 = AMB1/EI . Integrating Eq. (A.3) produces

1
2

(
dθ1
ds

)2

= −Q1 cos (ϕ − θ1) + C (A.4)

he constant C can be determined from the boundary condition
hat there is no bending moment at the distal tip, i.e., θ ′

1 (L) = 0,
which leads to

C = Q1 cos
(
ϕ − θ L

1

)
(A.5)

hen Eq. (A.3) can be rearranged

s =

√
1

2Q1

dθ1√
cos

(
ϕ − θ L

1

)
− cos (ϕ − θ1)

(A.6)

ntegrating Eq. (A.6) we have

=

√
1

2Q1

∫ θL1

0

dθ1√
cos

(
ϕ − θ L

1

)
− cos (ϕ − θ1)

=

√
1

2Q1
Φ(ϕ, θ L

1)

(A.7)
8

here nondimensional function Φ(ϕ, θ L
1) is defined as

Φ
(
ϕ, θ L

1

)
=

∫ θL1
0

dθ1√
cos

(
ϕ−θL1

)
−cos(ϕ−θ1)

=

2√
cos

(
ϕ−θL1

)
−1

[
F

(
ϕ−θL1

2 , csc ϕ−θL1
2

)
− F

(
ϕ

2 , csc ϕ−θL1
2

)] (A.8)

in which F denoting the incomplete elliptic integral of the first
kind defined as

F (α, k) =

∫ α

0

dη√
1 − k2 sin 2η

(A.9)

hen Eq. (A.7) can be expressed as

AMB1L2

EI
=

1
2
Φ2(ϕ, θ L

1) (A.10)

herefore, θ L
1 can be solved from Eq. (A.10). The kinematic relation

f the infinitesimal arc length ds reads as

dx = ds cos θ1 =

√
1

2Q1

cos θ1dθ1√
cos

(
ϕ−θL1

)
−cos(ϕ−θ1)

dy = ds sin θ1 =

√
1

2Q1

sin θ1dθ√
cos

(
ϕ−θL

)
−cos(ϕ−θ )

(A.11)
1 1
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m

y plugging θ L
1 into Eq. (A.11), we can solve the Cartesian coordi-

nates of the distal tip by integrating from 0 to L, i.e.,

xL =
∫ L
0 dx =

∫ θL1
0

√
1

2Q1

cos θ1dθ1√
cos

(
ϕ−θL1

)
−cos(ϕ−θ1)

yL =
∫ L
0 dy =

∫ θL1
0

√
1

2Q1

sin θ1dθ1√
cos

(
ϕ−θL1

)
−cos(ϕ−θ1)

(A.12)

ppendix B. Equivalent concentrated force at the distal tip in
tep 1

Now, let us consider a case in which a force f1 = f1(cosϕex +

inϕey) is acting on the distal end of the elastica in the absence of
magnetic field (Fig. A.1a). At equilibrium, the bending moment
t point P can be written as

I
dθ1
ds

= f1 sinϕ
(
xL − x

)
− f1 cosϕ(yL − y) (B.1)

ifferentiating Eq. (B.1) with respect to s and invoking the kine-
atic relation dx = ds cos θ1 and dy = ds sin θ1, we have

EI
d2θ1
ds2

+ f1 sin(ϕ − θ1) = 0 (B.2)

Comparing Eqs. (A.2) and (B.2), we notice that distributed mag-
netic torque in the uniform magnetic field B1 is equivalent to a
tip force

f1 = AMB1 (B.3)

n other others, two loading conditions produce the same elastica
iven the same governing equation and boundary conditions.

ppendix C. Equivalent concentrated force at the distal tip in
tep 2

In Step 2, when the magnetization is uniform, Eq. (5) can be
xplicitly expressed as

I
dθ2
ds

=

∫ L

s
AMB2 sin(ϕ − θ2(η))dη

− R sinβ
(
xL − x

)
− R cosβ(yL − y) (C.1)

ifferentiating Eq. (C.1) we have

I
d2θ2
ds2

+ AMB2 sin (ϕ − θ2) − R sin (β − θ2) = 0 (C.2)

herefore, the distributed magnetic torque τ2 can be equivalently
eplaced by a concentrated force f2 = AMB2. If we further set

= AM (B2 − B1) ; β = π − ϕ (C.3)

q. (C.2) can recover Eq. (A.2). With the same boundary condi-
ions, i.e., clamped end at θ2(0) = 0 and moment-free θ ′

2 (L) = 0
t the distal tip, it can be readily concluded that the deformed
lastica does not change in Step 2, i.e., θ2(s) = θ1(s) if Eq. (C.3)
s satisfied. Therefore, the contact force R and its direction β are
nalytically given in Eq. (C.3).
Analytical solutions in Eq. (C.3) can be used to validate the

inite difference method. Here, we choose a representative uni-
orm magnetization with φ ≡ 0.2 and discretize the distal portion
nto 100 elements, i.e., K = 100 in the finite difference method.
he deformed elastica in Step 1 when B1 = 20, 30, 40, 60, 80 mT
nd ϕ = 180o are plotted in Fig. A.1c and corresponding contact
orces in Step 2 as a function of B2 − B1 are given in Fig. A.1d,
espectively. Fig. A.1c–d suggest that results by finite difference
ethod agree excellently with analytical solutions.
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