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a b s t r a c t

Soft materials have enabled diverse modern technologies, but their practical deployment is usually
limited by their mechanical failures. Fracture and fatigue of polymer networks are two important
causes of mechanical failures of soft materials. A soft material fails by fracture when a monotonic
load reaches its fracture toughness or fails by fatigue when a cyclic load reaches its fatigue threshold.
The fracture toughness is usually much higher than the fatigue threshold for randomly crosslinked
elastomers and gels. While fracture and fatigue have been extensively studied in randomly crosslinked
elastomers and gels, they have not been comparatively studied in polymer networks with well-
controlled architectures and defects. This work systematically studies the fracture and fatigue of ideal
polymer networks with controlled densities of dangling-chain defects. We show that the fracture
toughness and fatigue threshold of an ideal polymer network almost without defects are the same.
After introducing a low density of dangling-chain defects into the ideal polymer network, its fracture
toughness and fatigue threshold still maintain approximately the same. The fracture toughness of the
ideal polymer network is also independent of the loading rate. We further use the recently developed
defect-network model to explain the fatigue threshold (i.e., intrinsic fracture energy) of ideal polymer
networks with controlled densities of dangling-chain defects.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Soft materials including elastomers and gels have enabled a
ariety of modern technologies with examples as diverse as soft
obots [1–3], bioelectronics [4–7], tissue adhesives [8,9], biosens-
ng [10–12], and water harvesters [13–15]. However, the practical
eployment of these technologies is usually limited by the me-
hanical failures of soft materials. For example, a crack can prop-
gate in a piece of a soft material when a monotonic mechanical
oad on the material reaches a critical value, causing the fracture
ailure [16,17]. As another example, the crack can also propagate
n the material when a cyclic load on the material reaches another
ritical value, leading to the fatigue failure [18,19]. Fracture and
atigue of polymer networks represent two important causes of
echanical failures of soft materials. Designing high toughness
nd high fatigue resistance for soft materials is crucial for their
obustness and functions in modern technologies.

Over the last few decades, burgeoning experimental efforts
ave been made to understand fracture and fatigue of soft mate-
ials using randomly crosslinked polymer networks, which con-
ain non-uniform chain length (i.e., the number of monomers
n a chain connected by neighboring cross-links), non-uniform
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functionality (i.e., the number of chains connected to one cross-
link), chain entanglements, and/or uncontrolled topological de-
fects (e.g., dangling chains, cyclic loops) [20–22]. For example,
Yang et al. studied the effect of network imperfection on the frac-
ture toughness of polyacrylamide hydrogels [23]. They attributed
the unexpected high toughness of polyacrylamide hydrogels to
the non-uniform chain lengths and distributed chain scissions
around the crack. Slootman et al. used mechanochemistry to
characterize the spatial distribution of bond scission around crack
surfaces in elastomers [24]. They reported that the bond scissions
near the crack plane are rate-dependent and can be delocalized
over up to hundreds of micrometers. Similarly, Matsuda et al.
used mechano-radical polymerization of thermo-responsive fluo-
rescent polymers to visualize the chain scission around the crack
tip of double-network hydrogels [25]. While fracture and fatigue
have been extensively studied in these randomly crosslinked
elastomers and gels, they have not been comparatively stud-
ied in polymer networks with well-controlled architectures and
defects. Such well-controlled polymer networks can potentially
provide better understanding on mechanical failures of poly-
mer networks by directly connecting experimental results to
theoretical models [26].

Here, we systematically study the fracture and fatigue of ideal
polymer networks with nearly uniform chain length and func-
tionality, no entanglement, and controlled densities of dangling-

chain defects (Fig. 1a). Our experimental results show that the
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Fig. 1. Fracture and fatigue of ideal polymer networks. (a) Schematic illustration of ideal polymer networks containing various topological defects such as dangling
hains. (b) Fracture toughness and fatigue threshold of ideal polymer networks without defects and with low-density defects are the same (i.e., Γfracture = Γfatigue),
which are also independent of the loading rate.
fracture toughness Γfracture and fatigue threshold Γfatigue of an
ideal polymer network almost without defects are the same (i.e.,
Γfracture = Γfatigue). After introducing low-density dangling-chain
defects into the ideal polymer network, its fracture toughness and
fatigue threshold still maintain approximately the same (Fig. 1b).
In addition, we show that the measured fracture toughness of
an ideal polymer network without defects or with dangling-
chain defects is independent of the loading rate (Fig. 1b). We
further use the recently developed defect-network model [26]
to theoretically explain the fatigue threshold of ideal polymer
networks with controlled densities of dangling-chain defects.

The outline of this paper is as follows. In Section 2, we pro-
vide the experimental details including fabrication of ideal poly-
mer networks, control of topological defects, and characterization
of fracture and fatigue of ideal polymer networks with various
dangling-chain defects. In Section 3, we compare the fracture
toughness and fatigue threshold of ideal polymer networks, and
investigate the rate dependence of fracture toughness of ideal
polymer networks. We conclude the current study in Section 4,
where we also provide future research directions.
2

2. Experiments

2.1. Fabrication of ideal polymer networks

We start with the A–B type tetra-arm polyethylene glycol
(PEG) hydrogel to prepare ideal polymer networks with a con-
trolled introduction of defects. The A–B type tetra-arm PEG hy-
drogel contains tetra-amine-terminated PEGmacromers (i.e., PEG-
NH2, Laysan Bio) and tetra-NHS-terminated PEG macromers (i.e.,
PEG-NHS, Laysan Bio) (Fig. 2a). The molecular weights of both
macromers are 20,000 g/mol with each arm of 5000 g/mol. The
synthesis of the tetra-arm PEG hydrogel follows the reported
protocol [27]. 100 mg PEG-NH2 is first dissolved and vigorously
mixed in 1 mL phosphate buffer solution with a pH of 7.4
and ionic strength of 100 mM. Thereafter, 100 mg PEG-NHS is
dissolved and vigorously mixed in 1 mL phosphate-citric acid
buffer solution with a pH of 5.8 and ionic strength of 100 mM.
To introduce defects by tuning the reaction efficiency p, we
incubate the PEG-NHS for a controlled degradation time tdeg,
during which the NHS group turns to be inactive by hydrolyz-
ing the activated esters (Fig. 2b). Thereafter, both the solutions
of PEG-NH and PEG-NHS are vigorously mixed and poured
2
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Fig. 2. Chemical structure and chemical reaction of A–B type tetra-arm PEG hydrogels. (a) Chemical structure of PEG-NH2 macromer and PEG-NHS macromer.
b) The NHS ester reacts with the amine group to yield a stable amide bond as the chemical cross-link. The hydrolysis of NHS ester yields an unreactive end group
f PEG-NHS macromers.
nto a rectangular-shaped mold with the dimensions of 40 mm,
0 mm, and 1.5 mm, giving a final concentration of PEG-NH2
nd PEG-NHS macromers as 50 mg/mL, respectively. The final
oncentrations of PEG-NH2 and PEG-NHS macromers are nearly
t the overlap concentration of PEG macromers with a molecular
eight of 20,000 g/mol [28], giving negligible inter-/intra- chain

nteractions. The resultant samples are placed in a humidity
hamber for at least 12 h to complete the reaction of forming
mide bonds between macromers (Fig. 2b). The samples are fur-
her submerged in deionization water to reach their equilibrium
wollen states. At least 24 h are required to ensure that the
amples reach their fully swollen states.

.2. Control of topological defects in ideal polymer networks

Since the end groups of the type A PEG macromer and the type
PEG macromer do not have self-reactions and must connect

lternatively, the tetra-arm A–B PEG hydrogel has its unique
eature of forming near-ideal polymer networks with approx-
mately mono-dispersity, uniform functionality, and negligible
efects [29,30]. Such near-ideal polymer network architecture
as supported through small-angle neutron scattering [28], dy-
amic light scattering [29], neutron spin echo spectroscopy [31].
n addition, Fourier-transform infrared spectroscopy was also
erformed to characterize the number of unreacted groups (or
angling chains) in the tetra-arm PEG hydrogels [32]. The max-
mum reaction efficiency of the PEG hydrogel was identified
s high as 0.93, suggesting negligible unreacted groups in the
aterial.
While the tetra-arm A–B type PEG hydrogel represents a near-

deal polymer network, it still contains two types of defects:
angling chains and cyclic loops [33]. We first estimate the frac-
ion of cyclic loops in our material system based on the reported
imulation results [34]. For an ideal network with 100 mg/mL
EG macromers with a molecular weight of 20,000 g/mol, the
alculated fraction of secondary loops is approximately 6% per
acromer. The fractions of higher-order loops are even lower. For
3

example, the calculated fractions of fourth-order loops and sixth-
order loops are only about 0.2% per macromer. Given the low
fractions of various orders of cyclic loops, we can regard the tetra-
arm PEG hydrogel as an ideal polymer network containing only
dangling-chain defects. The number of dangling chains in a defec-
tive macromer defines the order of the defect. For example, the
defective macromer containing X dangling chains is defined as
the Xth-order dangling-chain defect. In a tetra-arm ideal polymer
network, there are four types of dangling-chain defects: 1st-order,
2nd-order, 3rd-order, and 4th-order dangling-chain defects.

The number of each type of dangling-chain defects can be
controlled by tuning the reaction efficiency p to form cross-links
between PEG-NH2 macromers and PEG-NHS macromers. To tune
the reaction efficiency p, we incubate PEG-NHS macromers for
a controlled time tdeg, during which the activated esters in the
NHS groups are hydrolyzed, making the NHS groups inactive and
decreasing the reaction efficiency p. To identify the relationship
between the reaction efficiency p and the controlled time for
incubation tdeg, we take the linear form [27] and identify the
reduction rate of the reaction efficiency p by fitting the measured
modulus of the resultant polymer network with the theoretical
model (Fig. 6c and Appendix B.). Fig. 6a plots the identified
reaction efficiency p as a function of the controlled incubation
time tdeg.

2.3. Fracture of ideal polymer networks

We first perform fracture tests of ideal polymer networks with
various densities of dangling-chain defects. We use pure shear
tensile tests to first measure the nominal stress versus stretch
curve (i.e., S vs. λ) of a sample with no crack [16]. We further
use a razor blade to introduce a sharp crack in the other sample
with the same dimensions as the unnotched sample. We mea-
sure the critical stretch (i.e., λc), at which crack propagates. The
measured fracture toughness can be calculated through Γfracture =

H
∫ λc
1 Sdλ, where H is the height of the sample (Fig. 3a). As plotted

in Fig. 3b, the critical stretch increases slightly as the degradation
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Fig. 3. Fracture test of tetra-arm PEG hydrogels. (a) Schematically illustration of the pure shear tensile test for measuring the fracture toughness. (b) Nominal
tress versus stretch curves of tetra-arm PEG hydrogels with various degradation time (5 min, 30 min, 60 min, 120 min, 180 min, 240 min). The cross points indicate
he critical point, at which the crack propagates in the corresponding notched sample. (c) Measured fracture toughness as a function of degradation time.
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ime for NHS groups increases. Accordingly, the measured frac-
ure toughness of ideal polymer networks decreases, manifesting
he controlled introduction of dangling-chain defects in the series
f samples (Fig. 3c).

.4. Fatigue of ideal polymer networks

We further perform fatigue fracture tests of ideal polymer
etworks with various topological defects. As schematically il-
ustrated in Fig. 4a, we cyclically load an unnotched sample to
easure the nominal stress versus stretch curve (i.e., S vs. λ)
nder pure shear tensile loading [35]. Unlike most synthetic hy-
rogels, the ideal polymer networks show no hysteresis loop and
o rate dependency (Fig. 4b). In addition, a negligible decrease
n stress is observed over cycles (Fig. 4c). The slight reduction
f the stress is possibly attributed to the poroelasticity of the
ydrogel sample. No hysteresis loop, no rate dependency, and
egligible decrease of the nominal stress indicate that the ideal
olymer networks containing dangling-chain defects are purely
lastic and free of mechanical dissipations. The strain energy den-
ity stored in the sample over cycles can be calculated through(

λapplied
)

=
∫ λapplied
1 Sdλ, where λapplied is the maximum applied

tretch, S and λ are the nominal stress and stretch of the sample
ithout crack. Similar to the fracture test, we use a razor blade
o introduce a sharp crack in the sample. We perform cyclic
oading on the notched sample and use a camera to record the
rack extension (i.e., c) over cycles (i.e., N). When the applied
aximum stretch is low, there is no crack extension under cyclic

oading (i.e., dc/dN = 0). We gradually increase the stretch
y 0.05. At a critical stretch, the sample shows a rapid crack
ropagation (Fig. 4d). The maximum applied energy release rate
s calculated by G

(
λapplied

)
= H

∫ λapplied
1 Sdλ. Fig. 4e summarizes

he measured crack extension rate under cyclic loading dc/dN
s a function of the applied energy release rate G for an ideal
olymer network with a degradation time of 60 min. There exists
maximum stretch (i.e., λm), below which the crack extension

ate is strictly zero. We take the critical energy release rate at λm
s the measured fatigue threshold (i.e., Γfatigue = Gc = G (λm) =∫ λm

1 Sdλ). The fatigue threshold of the ideal polymer network
ith degradation time of 60 min is measured as 11.6 J/m2.

. Results and discussion

.1. Comparison between fracture toughness and fatigue threshold

The fracture toughness and fatigue threshold have been inten-
ively measured and reported in various soft materials including
atural rubbers [36], dielectric elastomers [37], interpenetrating
4

ough hydrogels [35], double network hydrogels [38], viscoelas-
ic polyampholyte hydrogels [39], and semi-crystalline hydro-
els [40–42]. The measured fatigue thresholds of these soft ma-
erials are consistently lower than their fracture toughnesses by
rders of magnitude. Even for a nearly elastic and low-hysteresis
olyacrylamide hydrogel [42,43], the measured fatigue threshold
s still much lower than its fracture toughness. To the best of our
nowledge, there has been no reported polymer network giving
he same fracture toughness and fatigue threshold.

In this work, we systematically compare the fracture tough-
ess and fatigue threshold of ideal networks with various densi-
ies of defects. Our measurements show the fracture toughness
nd fatigue threshold of ideal polymer networks almost with-
ut defects (i.e., tdeg = 5min) and with low-density defects
i.e., tdeg = 30, 60, 120min) are approximately the same (i.e.,
fracture/Γfatigue ≈ 1, Fig. 4f). Using the tetra-arm PEG hydrogel

with the degradation time of 60 min as one example, its fatigue
threshold is measured as 11.6 J/m2, which is approximately the
same as its fracture toughness (i.e., 12.2 ± 1.8 J/m2). To further
verify the approximately same fracture toughness and fatigue
threshold, we record the crack extension of a notched sample
in fatigue tests. As shown in Fig. 4d, when the applied energy
release rate is below its fatigue threshold, there is no detectable
crack extension (the resolution of the camera is 20 µm/pixel) or
reduction of force under 1000 cycles of loading; however, when
the applied energy release rate exceeds its fatigue threshold, the
sample fails by rapid crack propagation under a single cycle of
loading.

There are two physical reasons to explain the approximately
same fracture toughness and fatigue threshold of ideal polymer
networks almost without defects and with low-density defects.
First, there should be no mechanical dissipations when cyclically
deforming the bulk polymer networks (supported by the negli-
gible hysteresis in Fig. 4b), since such dissipations lead to the
difference between fracture toughness and fatigue threshold of
polymer networks [35]. Second, there should be no delocalized
damage of covalent bond scission from the crack plane once the
crack extends, which otherwise results in higher fracture tough-
ness than fatigue threshold in randomly crosslinked elastomers
and hydrogels.

When we introduce high-density defects into the ideal poly-
mer network (i.e., tdeg = 180, 240min), we find the fracture
toughness is slightly higher than the fatigue threshold (Fig. 4f).
This may be due to the slight dissipations induced by substantial
dangling chains.
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Fig. 4. Fatigue fracture test of tetra-arm PEG hydrogels. (a) Schematically illustration of the pure shear tensile test for measuring the fatigue threshold. (b) Nominal
tress versus stretch curves of the tetra-arm PEG hydrogel with the degradation time of 60 min under one cycle of loading. (c) Nominal stress as a function of
oading cycle of the tetra-arm PEG hydrogel with the degradation time of 60 min under the maximum loading stretch of 1.6. (d) Images of the notched sample of the
etra-arm PEG hydrogel with the degradation time of 60 min at 1st cycle and 1000th cycle under the maximum applied energy release rate of 11.6 J/m2 , showing no
rack propagation. Images of the same notched sample at 1st cycle and 1000st cycle under the maximum applied energy release rate of 13.7 J/m2 , showing rapid crack
ropagation. (e) Fatigue crack extension per cycle dc/dN as a function of the maximum applied energy release rate G, measuring the fatigue threshold of 11.6 J/m2 .
he gray region denotes the domain where the samples fracture under a monotonic loading, measuring the fracture toughness of 12.2 ± 1.8 J/m2 . (f) Summarized
ormalized fracture toughness of ideal polymer networks by its fatigue threshold Γfracture/Γfatigue for the tetra-arm PEG hydrogels with various degradation times.
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.2. Rate-independent fracture toughness

The effects of loading rates on fracture toughness of soft ma-
erials have been intensively studied in randomly crosslinked
olymer networks. Existing studies attribute the rate-dependent
racture toughness to various viscoelastic dissipations such as
hain entanglements [44,45] and reversible crosslinks [46–48].
espite existing studies in randomly crosslinked polymer net-
orks, the effects of loading rates on fracture toughness of ideal
olymer networks have not been studied.
Here, we investigate the rate dependence of the ideal poly-

er networks’ fracture toughness. We first measure the nominal
tress versus stretch curve of an unnotched PEG hydrogel sample
t various loading rates of 0.2, 1, 5, 10, 20 min−1. As shown in
ig. 5a and 5b, there is no rate dependency and negligible hys-
eresis at various loading rates. We further measure the fracture
oughness of ideal polymer networks almost without defects (i.e.,
deg = 5min) and with defects (i.e., tdeg = 60min). The fracture
oughness of ideal polymer networks almost without defects and
ith defects show no rate dependency either (Fig. 5c–f). This
bservation suggests the slight introduction of dangling-chain
efects in ideal polymer networks does not contribute to the rate
ependence of fracture toughness of ideal polymer networks.

.3. Comparison of experimental results with defect-network model

Let us first consider an ideal polymer network without any de-
ect (i.e., p = 1) in the as-prepared reference state. The phantom
etwork model [49,50] and the Lake–Thomas model [20,26,27]
redict the shear modulus µref and the fatigue threshold (or the
ntrinsic fracture energy) Γ ref of an ideal polymer network
fatigue

5

ithout defect (i.e., p = 1) at the as-prepared reference state as

ref (p = 1) =
f − 2
f

nkT (1a)

Γ ref
fatigue (p = 1) = αn2/3UN (1b)

where f is the crosslink functionality, n is the number of active
chains per unit volume at the as-prepared reference state, N is
the number of monomers per chain, kT is the product of the
Boltzmann constant and the absolute temperature, U is the bond
energy stored in one monomer at fracture, and α > 1 is a dimen-
sionless parameter that accounts for the network architecture’s
contribution to the fatigue threshold [26].

We next estimate the values of parameters in Eq. (1). The
crosslink functionality is identified as f = 4 since we use tetra-
arm polymer networks. The number of active chains per unit
volume at the reference state is equal to n = 2cmacromerM−1

w NA =

.02× 1024 m−3, where cmacromer = 100mg/mL is the concentra-
ion of the overall PEG macromers at the reference state, Mw =

0, 000 g/mol is the molecular weight of one PEG macromer, and
A = 6.02 × 1023/mol is the Avogadro constant. The number

of PEG monomers in a single chain can be taken as N = 227,
because the molecular weight of one PEG monomer is 44 g/mol
and the molecular weight of one polymer chain is 10,000 g/mol.
kT is equal to 4.11 × 10−21J at room temperature. Because the
backbone of one PEG monomer consists of two C–O bonds and
one C–C bond, the bond dissociation energy of the PEG monomer
is estimated to be three times the lowest covalent bonding en-
ergies of C–O bond (356 kJ/mol) or C–C bond (346 kJ/mol) [51],
giving the bond dissociation energy of one PEG monomer as 1,038
kJ/mol [27]. Following the historical treatment [27,52], one can
take the bond dissociation energy of one PEG monomer as the
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Fig. 5. Fracture toughness of ideal polymer networks at various loading rates. (a) Nominal stress versus stretch curves of an unnotched PEG hydrogel sample
ith the degradation time of 60 min at the loading rate of 0.2, 1, 5, 10, 20 min−1 . (b) Measured hysteresis ratio as a function of various loading rates of the
etra-arm PEG hydrogel with the degradation time of 60 min. (c) Force versus stretch curves of the notched samples and (d) fracture toughness versus stretch rate
f the tetra-arm PEG hydrogel with the degradation time of 5 min, representing ideal polymer networks almost without defects. (e) Force versus stretch curves of
he notched samples and (f) fracture toughness versus stretch rate of the tetra-arm PEG hydrogel with the degradation time of 60 min, representing ideal polymer
etworks with defects.
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ond energy stored in one monomer at fracture, namely, U =

, 038 kJ/mol. Notably, recent studies [53] clarify the difference
etween the bond energy at fracture and the bond dissociation
nergy. For example, Wang et al. [53] estimated the bond energy
tored in a covalent bond at fracture as 60 kJ/mol, well below
he typical values (350–370 kJ/mol) of covalent bond dissociation
nergies. Mao et al. [54] calculated the bond energy stored in
ne C–C bond at fracture as 327 kJ/mol through ab initio cal-
ulations and free energy minimization, slightly lower than its
ond dissociation energy (346 kJ/mol). By selecting different U
alues, one can obtain difference values of α by fitting the theory
n Eq. (1b) with experimental results. In this work, we still use

= 1, 038 kJ/mol for the subsequent calculations. By further
ubstituting the values of N , kT , U , and n, we can identify the
hear modulus of an ideal polymer network without defects at
he reference state as µref (p = 1) = 12.38 kPa, and the fatigue
hreshold of an ideal polymer network without defects at the
eference state as Γ ref

fatigue (p = 1) = 12.95α J/m2.
The defect-network model was recently developed to predict

he fatigue thresholds [26,55] and shear moduli [26,33,34] of ideal
olymer networks with various types of topological defects (see
etails in Appendix). In particular, for an ideal polymer network
ith only dangling-chain defects, the dependence of the shear
odulus and fatigue threshold at the as-prepared reference state
n the reaction efficiency p can be expressed as,

µref (p)
µref (p = 1)

= 1−
5
3

(1 − P)3 P − 7 (1 − P)2 P2
−

17
3

(1 − P) P3
− P4

(2a)

Γ ref
fatigue (p)

Γ ref
fatigue (p = 1)

= 1−
3
4

(1 − P)3 P−
9
2

(1 − P)2 P2
−

19
4

(1 − P) P3
−P4

(2b)
6

P = pP3
+ 1 − p (2c)

where µref (p) and Γ ref
fatigue (p) are the shear modulus and fatigue

threshold of a polymer network with reactions efficiency p at the
as-prepared reference state respectively, P is the probability of
connecting to a dangling end for one arm of the macromer. In ad-
dition, the shear modulus and fatigue threshold of the ideal poly-
mer network measured at the swollen state (i.e., µ (p), Γfatigue (p))
can be related to the values at the reference state (i.e., µref (p),

ref
fatigue (p)) with

ref (p) = µ (p) λs (3a)

ref
fatigue (p) = Γfatigue (p) λ2

s (3b)

here λs is the swelling ratio in length (Fig. 6b). As shown in
ig. 6d, our model captures the nonlinear reduction of polymer
etworks’ fatigue thresholds as the reaction efficiency decreases.
or polymer networks with high reaction efficiency (i.e., p > 0.8),
heir fatigue thresholds are approximately the same as that of
deal polymer network without defects (around 30 J/m2). For
olymer networks with low reaction efficiency (i.e., p < 0.8),
he presence of substantial dangling-chain defects dramatically
ecreases their fatigue thresholds.
This nonlinear trend is possibly due to the two competing

echanisms explained by our model: (i) network toughening by
ncreasing the effective chain length, and (ii) network weakening
y introducing inactive polymer chains. When the reaction effi-
iency is high, these two mechanisms are competing with each
ther, resulting in an approximately constant fatigue threshold;
s the reaction efficiency further decreases, the network weaken-
ng dominates, giving a significant reduction of fatigue thresholds.
y fitting the experimental data with our model, we can further
dentify the dimensionless parameter α as 2.4, which is approx-
mately consistent with the theoretical value in our model (i.e.,
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Fig. 6. Comparisons between experiment and theory. (a) Calibrated reaction efficiency p as a function of degradation time tdeg . (b) Measured swelling ratio in length
λs as a function of degradation time tdeg . (c) The comparison of the shear modulus between experiment and theory. The hollow dots and the solid dots denote the
measured shear modulus at the swollen state µ and at the reference state µref in experiment (Fig. B.1). The solid line denotes the theoretical shear modulus at
the reference state µref fitted using the defect-network elastic model. (d) The comparison of the fatigue threshold between experiment and theory. The hollow dots
and the solid dots denote the measured fatigue threshold at the swollen state Γfatigue and at the reference state Γ ref

fatigue in experiment. The solid line denotes the
theoretical fatigue threshold at the reference state Γ ref

fatigue using the defect-network fracture model.
Z

α = 2) [26]. The quantitative agreement between the experiment
and our model suggests that the A–B type tetra-arm PEG polymer
network can serve as a standard material platform for polymer
mechanics.

4. Conclusion

In this paper, we study the fracture and fatigue of ideal poly-
mer networks with uniform chain length and functionality, and
controlled densities of dangling-chain defects. Our experimental
results ascertain that the fracture toughness and fatigue threshold
of an ideal polymer network almost free of defects are the same
(i.e., Γfracture = Γfatigue). After introducing various densities of
dangling-chain defects into the ideal polymer network, its frac-
ture toughness and fatigue threshold still maintain approximately
the same. We show that the measured fracture toughness of
ideal polymer networks almost without defects and with de-
fects is independent of the loading rate. We further use the
defect-network fracture model to theoretically explain the fatigue
thresholds of ideal polymer networks with controlled densities
of dangling-chain defects. This work shows the power of using
well-designed synthetic materials as an experimental platform to
facilitate fundamental studies in polymer mechanics.
7
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ppendix A. Defect-network fracture model

The model focuses on a tetra-arm ideal polymer network
ontaining only dangling chains in the form of various orders
e.g., 1st-order, 2nd-order, 3rd-order, and 4th-order). We denote the
robability of connecting to a dangling end for one arm of the
acromer as P. We further denote the probability of the arm to

form a cross-link with one arm of the neighboring macromer as
p, the probability of the arm to connect with an inactive dangling
chain as 1 − p. If the arm forms a cross-link with one arm of the
neighboring macromer, the only possibility for the arm to connect
with an inactive dangling chain is that all the remaining three
arms of the neighboring macromer must connect to a dangling
end, giving the possibility of P3. Given this probabilistic analysis,
e can write the relation between P and p as

= pP3
+ 1 − p (A.1)

Let CX and Cideal be the ratios of the numbers of defective
acromers X and defect-free macromers over the total number
f macromers that constitute the polymer network, respectively.
he number conservation of macromers imposes

X

CX + Cideal = 1 (A.2)

pecifically, the possibility of defect-free macromers among the
verall macromers is Cideal = (1 − P)4 since all arms of the
acromers remain active. The possibility of defective macromers
ith 1st-order dangling chain among the overall macromers is
1d = 4 (1 − P)3 P , since one arm of the defective macromer
s inactive while the other three remain active. Likewise, we
an calculate the possibility of defective macromers with 2nd-
rder dangling chain, 3rd-order dangling chain, 4th-order dangling
hain as C2d = 6 (1 − P)2 P2, C3d = 4 (1 − P) P3, C4d = P4,
espectively. Once the macromers are crosslinked, they form a
olymer network containing different types of active polymer
hains. We regard the chain as an affected polymer chain due to
he defect X if the active polymer chain is the closest chain to
defect X; otherwise, we regard the active polymer chain as an
naffected polymer chain. The number of affected chains due to a
efect X is denoted as Naffected

X , the number of unaffected chains is
enoted as Nunaffected, and the total number of polymer chains in
he corresponding defect-free ideal polymer network is denoted
s N total. Since one defective macromer (except 4th-order dangling

chain) affects one polymer chain on the crack path and one chain
is shared by two macromers, the number of affected chains due
to a defect X is Naffected

X = 0.5CXN total. In addition to the active
olymer chains, defects X also introduce inactive polymer chains
ith the number of N inactive

X . The number conservation of chains
imposes∑
X

(
Naffected

X + N inactive
X

)
+ Nunaffected

= N total (A.3)

he presence of one 1st-order dangling chain introduces 0.25
nactive chains since one-fourth of the arms of the defective
acromer is inactive, i.e., N inactive

1d = 0.25C1dN total (Fig. A.1b).
The presence of one 2nd-order dangling chain only increases the
length of an originally existing chain, thereby all the arms are
equivalently inactive, giving the number of inactive chains as
N inactive

2d = C2dN total (Fig. A.1b). All the arms of one defective
macromer with a 3rd-order dangling chain are elastically inactive.
In addition, the presence of one 3rd-order dangling chain pro-
duces one additional inactive arm of the neighboring macromer,
thereby giving the total number of inactive chains as N inactive

3d =

.25C N total (Fig. A.1b). The defective macromer with 4th-order
3d

8

dangling chain is a leaving macromer with no topological con-
nection with the polymer network, thereby giving the number of
inactive chains as N inactive

4d = C4dN total. Following Eq. (A.3), we can
alculate the total number of inactive chains due to the defects
s

X

N inactive
X = (0.25C1d + C2d + 1.25C3d + C4d)N total (A.4)

t should be noted that the above calculation of the number of
nactive chains is overestimated when the ideal polymer network
ontains high-density defects since the above calculation neglects
he coupling between defective macromers. Here, we also provide
he calculation of the lower bound for the number of inactive
hains of ideal polymer networks with various reaction efficiency
. We start with the calculation of the total number of active
hains. Only defective macromers with 1st-order dangling chain
nd defective-free macromers produce active polymer chains.
he presence of one defective macromer with 1st-order dangling
hain produces 0.75 active chains in total, while the presence of
ne defect-free macromer produces one active chains in total. The
otal number of active chains in an ideal polymer network is equal
o (0.75C1d + Cideal)N total, namely,

X

Naffected
X + Nunaffected

=

(
3
4
C1d + Cideal

)
N total (A.5)

quivalently, the total number of inactive chains in an ideal
olymer network containing dangling-chain defects is equal to

X

N inactive
X =

(
1 −

3
4
C1d − Cideal

)
N total (A.6)

here C1d = 4 (1 − P)3 P and Cideal = (1 − P)4. Fig. A.2a plots the
pper bound and lower bound of the number of inactive chains in
n ideal polymer network with various reaction efficiency p using

Eq. (A.4) and Eq. (A.6), respectively. Notably, the two calculations
give consistent results when the introduced density of defects is
low, where the coupling effects between defects are negligible.

Once a crack propagates in an ideal polymer network, it frac-
tures unaffected chains as well as affected chains by different
types of defects (Fig. A.1a). We denote the effective energy re-
laxed by fracturing an unaffected polymer chain in an ideal poly-
mer network as Uideal and the effective energy relaxed by frac-
turing an affected polymer chain by a defect X as UX . The ratio
f UX over Uideal defines the fracture effectiveness of an active
olymer chain as γX = UX/Uideal, which characterizes the energy
ontribution of an active polymer chain to the intrinsic fracture
nergy of an ideal polymer network compared with that of an
naffected polymer chain in the polymer network. Following
ur recent work [26], the fracture effectivenesses of an affected
olymer chain, a 1st-order dangling chain, a 2nd-order dangling
hain, a 3rd-order dangling chain are equal to 1, 9/8, 3/2, and
/8, respectively (Fig. A.1b). Overall, the intrinsic fracture energy
f the polymer network with defects normalized by that of the
orresponding defect-free ideal network can be expressed as

Γ =

∑
X

γX
Naffected

X

N total +
Nunaffected

N total (A.7)

Alternatively, the normalized intrinsic fracture energy of polymer
networks can be expressed as

Γ =

∑
X

(γX − 1)
Naffected

X

N total −

∑
X

N inactive
X

N total + 1 (A.8)

where the first term
∑

X (γX − 1)Naffected
X /N total characterizes the

toughening effect due to the increased chain length since γ ≥ 1
X
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Fig. A.1. Illustration of defect-network fracture model. (a) Schematic illustration of the key concept for the defect-network fracture model: crack propagates by
racturing unaffected polymer chains as well as affected chains due to defects. (b) Schematic illustration of a fractured polymer chain on the crack path and deformed
eighboring chains. Depending on the type of the fractured polymer chain, it gives different fracture effectiveness. The fracture effectiveness of an ideal polymer
hain and the most affected chain by 1st-order dangling chain, 2nd-order dangling chain, and 3rd-order dangling chain is 1, 9/8, 3/2, and 9/8, respectively. Panels (a)
nd (b) are reproduced with permission from ref. [26].
2020 by the American Physical Society.
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nd the second term
∑

X N inactive
X /N total characterizes the weak-

ening effect due to the reduced active chain density.
Given the identified fracture effectiveness of active polymer

chains γX , the number of inactive chains N inactive
X and the number

of affected chains Naffected
X due to the presence of defect X, we can

write the normalized intrinsic fracture energy of ideal polymer
networks as a function of the reaction efficiency p,

Γ =
Γ (p)

Γ (p = 1)
= 1 −

3
4

(1 − P)3 P −
9
2

(1 − P)2 P2

−
19
4

(1 − P) P3
− P4 (A.9)

here P = pP3
+ 1 − p, Γ (p) is the intrinsic fracture energy of

an ideal polymer network with reaction efficiency p, Γ (p = 1)
is the intrinsic fracture energy of an ideal polymer network with
no defects. Alternatively, using Eq. (A.6) as the number of total
inactive chains in an ideal polymer network and given the num-
ber of affected chains by defect X equal to Naffected

X = 0.5CXN total,
e can also calculate the normalized intrinsic fracture energy of

deal polymer networks as

Γ =
Γ (p)

= (1 − P)4 +
13

(1 − P)3 P

Γ (p = 1) 4 n

9

+
3
2

(1 − P)2 P2
+

1
4

(1 − P) P3 (A.10)

here P = pP3
+ 1 − p. Fig. A.2b plots the comparison of the

calculated normalized intrinsic fracture energy using Eq. (A.9) and
Eq. (A.10), respectively.

Appendix B. Defect-network elastic model

For a tetra-arm ideal polymer network, given its reaction effi-
ciency p, the number densities of defect-free macromer and vari-
ous orders of defective macromers are equal to Cideal = (1 − P)4,
1d = 4 (1 − P)3 P , C2d = 6 (1 − P)2 P2, C3d = 4 (1 − P) P3, and
4d = P4, where P = pP3

+ 1 − p. Once the macromers are
rosslinked, they form a polymer network containing different
ypes of active polymer chains: unaffected polymer chains with
he number of Nunaffected and affected polymer chains due to
efects X with the number of Naffected

X . In addition to the active
olymer chains, defects X also introduce inactive polymer chains
ith the number of N inactive

X . The number conservation of chains
mposes

∑
X

(
Naffected

X + N inactive
X

)
+ Nunaffected

= N total where
total is the total number of polymer chains in the correspond-
ng defect-free ideal network. The number of inactive chains
n defect-network elastic model is the same as that in defect-
etwork fracture model. However, the numbers of affected chains
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Fig. A.2. (a) Calculations of the upper bound and lower bound of the total number of inactive chains as a function of reaction efficiency p using Eq. (A.4) and
q. (A.6), respectively. (b) Calculations of the lower bound and upper bound of the normalized intrinsic fracture energy as a function of reaction efficiency p using
q. (A.9) and Eq. (A.10), respectively.
0

Fig. B.1. Determination of shear moduli of ideal polymer networks. The mea-
sured shear modulus is extracted by fitting the nominal stress versus stretch
curve ranging from λ = 1 to λ = 1.3 using S = µ

(
λ − λ−3

)
, where S

is the nominal stress, λ is stretch, and µ is shear modulus. Solid lines are
experimentally measured curves, and dashed lines are fitted curves using S =(

λ − λ−3
)
.

nd unaffected chains due to the presence of defect X are differ-
nt between the two models since one defective macromer af-
ects multiple active chains in defect-network elastic model while
ne defective macromer affects only one chain in defect-network
racture model. Specifically, the number of affected chains due
o the presence of a 1st-order defective macromer is Naffected

1d =

.5C1dN total since one defective macromer affects three polymer
chains equivalently and one active chain is equally shared by
two macromers. Similarly, the number of affected chains due to
the presence of a 3rd-order defective macromer is Naffected

3d =

.5C3dN total. The number of affected chains due to the presence
of a 2nd-order defective macromer is Naffected

2d = 0.5C2dN total since
one defective macromer affects two polymer chains equivalently
and one active chain is shared by two macromers. The presence
of 4th-order defective macromer introduces no affected chains,
namely, Naffected

= 0.
4d o

10
We denote the effective chain length by elastically deforming
an unaffected polymer chain in an ideal polymer network as
Mideal and the effective chain length by elastically deforming an
affected polymer chain by a defect X as MX . The ratio of Mideal
over MX defines the elastic effectiveness of an active polymer
chain as εX = MX/Mideal, which characterizes the entropic en-
ergy contribution of an active polymer chain to the elastic shear
modulus of the corresponding polymer network compared with
that of an unaffected polymer chain in an ideal polymer network.
The elastic effectiveness of 1st-order dangling chain, 2nd-order
dangling chain, 3rd-order dangling chain, 4th-order dangling chain
is equal to 8/9, 2/3, 8/9, and 0, respectively [26]. Overall, the shear
modulus of the polymer network with defects normalized by that
of the corresponding defect-free ideal network can be expressed
as

µ =

∑
X

εX
Naffected

X

N total +
Nunaffected

N total (B.1)

Alternatively, the shear modulus of polymer networks can be
expressed as

µ =

∑
X

(εX − 1)
Naffected

X

N total −

∑
X

N inactive
X

N total + 1 (B.2)

The first term in Eq. (B.2) characterizes the reduction of shear
modulus due to the increased chain length by defects, and the
second term characterizes the reduction of shear modulus due to
the presence of inactive chains.

Given the identified elastic effectiveness of active polymer
chains εX , number of inactive chains N inactive

X and number of
affected chains Naffected

X due to the presence of defect X, we can
write the normalized shear modulus of ideal polymer network as
a function of the reaction efficiency p,

µ =
µ (p)

µ (p = 1)
= 1 −

5
3

(1 − P)3 P − 7 (1 − P)2 P2

−
17
3

(1 − P) P3
− P4 (B.3)

where P = pP3
+ 1 − p, µ (p) is the shear modulus of the ideal

polymer network with reaction efficiency of p, and µ (p = 1) =

.5NkT is the shear modulus of the ideal polymer network with-
ut defects predicted by the phantom network model [49,50].
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