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Fracture of polymer networks with diverse topological defects
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Polymer networks are pervasive in biological organisms and engineering materials. Topological defects such
as cyclic loops and dangling chains are ubiquitous in polymer networks. While fracture is a dominant mechanism
for mechanical failures of polymer networks, existing models for fracture of polymer networks neglect the
presence of topological defects. Here, we report a defect-network fracture model that accounts for the impact
of various types of topological defects on fracture of polymer networks. We show that the fracture energy of
polymer networks should account for the energy from multiple layers of polymer chains adjacent to the crack.
We further show that the presence of topological defects tends to toughen a polymer network by increasing
the effective chain length, yet to weaken the polymer network by introducing inactive polymer chains. Such
competing effects can either increase or decrease the overall intrinsic fracture energy of the polymer network,
depending on the types and densities of topological defects. Our model provides theoretical explanations for
the experimental data on the intrinsic fracture energy of polymer networks with various types and densities of
topological defects.
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I. INTRODUCTION

Polymer networks are pervasive in biological organisms
such as extracellular matrices [1] and engineering materials
such as elastomers [2] and gels [3,4]. Fracture of polymer
networks is a dominant cause of their mechanical failures.
Intrinsic fracture energy, the energy required to propagate a
crack in a material by a unit area without bulk dissipation,
plays a central role in characterizing fracture of polymer
networks [5–7]. The current understanding on the intrinsic
fracture energy of polymer networks is based on the Lake-
Thomas model [8], which accounts for the energy required to
fracture a single layer of polymer chains in a polymer network
without any topological defect; nevertheless, topological de-
fects such as cyclic loops and dangling chains are ubiquitous
in polymer networks. Recent experiments have shown that
the Lake-Thomas model underestimates the intrinsic fracture
energy of nearly defect-free polymer networks by a few times
[9,10]. In addition, as the density of dangling chains in a
polymer network increases, the intrinsic fracture energy of
the polymer network decreases at a rate slower than its shear
modulus decreases. These intriguing yet unexplained exper-
imental results clearly indicate the limitation of the current
understanding on fracture of polymer networks.

Burgeoning interests are being focused on understand-
ing the relationship between network structure and fracture
behavior [11,12]. For example, through the combined exper-
imental and numerical efforts, Yamaguchi et al. [11] studied
the critical roles of chain length heterogeneity and function-
ality heterogeneity in the fracture energy of networks. By
developing an adaptive quasicontinuum approach, Elbanna
et al. [13] investigated the effects of local topology and dis-
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order on the network fracture characteristics. Despite these
efforts, the impact of various types of topological defects on
fracture of polymer networks remains illusive.

Here, we report a defect-network fracture model capa-
ble of predicting the intrinsic fracture energy of polymer
networks without defect and polymer networks containing
various types topological defects including cyclic loops and
dangling chains (Fig. 1). We show that the Lake-Thomas
model underestimates the intrinsic fracture energy of defect-
free polymer networks due to the negligence of energy stored
in the polymer chains adjacent to the fractured chains. The
defect-network fracture model is inspired by the recently
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FIG. 1. (a) Schematic illustration of crack propagation in a poly-
mer network with topological defects by fracturing active polymer
chains. (b) Cyclic loops and dangling chains are the two most repre-
sentative types of topological defects in polymer networks.
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FIG. 2. Schematic illustration of the defect-network fracture
model. (a) Crack propagation in a polymer network with topological
defects. (b) The defect-network fracture model gives the same den-
sity of fractured polymer chains as that in (a) but effectively longer
fractured chain than those in (a). Overall, the defect-network fracture
model accounts for the energy in multiple layers of polymer chains
adjacent to the fractured chains.

developed real elastic network model [14] or more gener-
ally the phantom network model [15,16]. Analogous to the
previous models, our model introduces effectively longer frac-
tured chains to account for the energy of the fractured chains
(Fig. 2). However, physically different from the previous mod-
els, the effectively longer chains in our model do not change
the density of the layer of fractured chains (Fig. 2). Over-
all, our model predicts that the intrinsic fracture energy of
defect-free polymer networks is a few times higher than the
Lake-Thomas model’s prediction. Our model further shows
that the presence of topological defects tends to toughen a
polymer network by increasing the effective chain length,
yet to weaken the polymer network by introducing inactive
polymer chains. Such competing effects can either increase or
decrease the overall intrinsic fracture energy of the polymer
network, depending on the types and densities of topological
defects introduced. For example, the introduction of second-
order loops [Fig. 1(b)] into a polymer network increases its
intrinsic fracture energy but decreases its shear modulus; the
presence of first-, second-, third-, or fourth-order dangling
chains [Fig. 1(b)] in a polymer network decreases its intrin-
sic fracture energy at rates slower than the reduction rates
of its shear modulus. Furthermore, our model explains the
experimental data on the intrinsic fracture energy of nearly
defect-free polymer networks and polymer networks with
varying densities of first-, second-, third-, or fourth-order dan-
gling chains [9].

II. FRACTURE OF DEFECT-FREE IDEAL POLYMER
NETWORKS

Without loss of generality, let us consider an ideal polymer
network that has uniform chain length and no defect. The
functionality of the polymer network f denotes the number

of polymer chains at each cross-linking point. Note f should
be equal to or greater than 3 for polymer networks. The prop-
agation of a crack in the ideal polymer network will fracture a
layer of polymer chains on the crack path [8]. While the elas-
ticity of a polymer chain depends on its entropy, the fracture
of the polymer chain is energetic [Figs. 3(a) and 3(b)]. Re-
cent experiments [17,18] and simulations [19,20] have shown
that the force-extension relations for the energetic elongation
and fracture of polymer chains are approximately linear and
that the entropic effect on the fracture energy of polymer
chains is negligible [for example, Fig. 3(a) [17,18,21,22].
Given these observations, we approximate the fracture energy
of the polymer chain as that of a linear elastic spring by
Uchain = F 2

f /(2S), where Ff is the force required to fracture
the chain and S is the spring constant of the fully extended
chain [20,23]. The crack propagation will relax the energy
stored in the fractured polymer chains as well as the adjacent
polymer chains. In a real sample, the structure of a tetra-arm
polymer network is a three-dimensional tetrahedron lattice,
similar to the topology of a diamond [24]. Here, we focus on
the simplified two-dimensional lattice structure for the calcu-
lation, which has been well adopted by the classical affine and
phantom network models in polymer elasticity [15,16] and
the classical Lake-Thomas model in polymer fracture [8]. As
illustrated in Fig. 3(c), the fracture force Ff of a polymer chain
on the crack path (denoted as i = 0) is equally shared by the
f − 1 neighboring chains on each of its two ends (denoted as
i = −1 or +1). The force in a chain with i = −1 or +1 is
further equally shared by the neighboring chains on its left or
right side (denoted as i = −2 or +2), respectively. In this way,
the maximum force in the ith polymer chains can be calculated
as Ff /( f − 1)|i|. Based on the linear-chain assumption, the
total energy stored in and relaxed by all ith polymer chains
can be calculated as Ui = Uchain/( f − 1)|i|, which is plotted
in Fig. 3(d). Overall, the effective energy relaxed by frac-
turing a polymer chain in the ideal polymer network can be
calculated as

Uideal =
∞∑

−∞
Ui = f

f − 2
Uchain. (1)

In comparison, the energy relaxed by fracturing a polymer
chain in the Lake-Thomas model is only U0 or Uchain. Since the
energy required to fracture a polymer chain is linearly propor-
tional to the chain length [8], the polymer chains adjacent to
the fractured chains in our model give effectively longer frac-
tured chains compared with the Lake-Thomas model, while
not changing the area density of the fractured chains (Fig. 2).
Therefore, our model predicts that the intrinsic fracture energy
of ideal polymer networks is f /( f − 2) times the value given
by the Lake-Thomas model. The effect of the neighboring
chains on the intrinsic fracture energy can be significant, es-
pecially for ideal polymer networks with low functionality f
[Fig. 3(e)]. For example, for a tetra-arm ideal network (i.e.,
f = 4), the intrinsic fracture energy predicted by our model
is two times the value predicted by the Lake-Thomas model,
implying that the fracture energy of ideal polymer networks
without defects should account for the energy from multiple
layers of polymer chains. Notably, recent experiments have
indeed shown that the Lake-Thomas model underestimates
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FIG. 3. (a) Experimentally measured force-extension curves of two single polymer chains [i.e., poly(N, N ′-dimethylacrylamide) (PDMA)
and poly(N, N ′-diethylacrylamide) (PDEA)] by force spectroscopy [17]. (b) Schematic illustration of the force-extension curve of a single
polymer chain, the enclosed area of which defines the fracture energy of the chain Uchain. (c) Schematic illustration of a fractured polymer
chain on the crack path (i.e., i = 0) and deformed neighboring chains (i.e., |i| > 0). (d) The energy relaxed by all ith polymer chains Ui

normalized by the fracture energy of an ideal chain on the crack path U0 in ideal polymer networks with functionality f = 3, 4, 5, and 6.
(e) The effective energy relaxed by fracturing a polymer chain in the ideal polymer network Uideal normalized by the fracture energy of the
chain on the crack path U0 as a function of the functionality f .

the measured intrinsic fracture energy of nearly defect-free
tetra-arm networks by around three times [9].

III. FRACTURE OF POLYMER NETWORKS WITH
TOPOLOGICAL DEFECTS

Next, we will present a defect-network fracture model
to predict the intrinsic fracture energy of polymer networks
containing various cyclic loops [14,25] and dangling chains
[26,27]—two of the most representative types of topological
defects. Because existing experiments are based on tetra-arm
networks with uniform chain length [9], we focus on tetra-
arm networks with topological defects in this paper ( f = 4).
The introduction of a cyclic loop or a dangling chain into an
ideal polymer network can affect its intrinsic fracture energy
by changing the energy required to fracture polymer chains
affected by the defect and/or by introducing inactive polymer
chains. Let us denote the energy required to fracture a polymer
chain that is most affected by a defect X as UX ; let us further
define the fracture effectiveness of this polymer chain as γX =
UX /Uideal, where Uideal is the effective energy by fracturing an
unaffected ideal chain in the same network. We next calculate
the UX and γX for various topological defects in a tetra-arm
network. Notably, it is reasonable to assume that the defects
in the polymer network are sparsely distributed and thus do
not interact with one another [14,25,27,28].

When the defect is a second-order loop, denoted as X = 2l ,
the most affected polymer chains are the chains in the loop
itself. As illustrated in Fig. 4(a), the fracture force 2Ff of
a second-order loop on the crack path (denoted as i = 0) is
equally shared by the two neighboring chains on each of its
two ends (denoted as i = −1 or +1). The force in a chain
with i = −1 or +1 is further shared by the three neighboring
chains on its left or right side (denoted as i = −2 or +2),
respectively. In this way, the maximum force sustained by
each ith polymer chain can be calculated as Ff /3|i|−1 with its
relaxed energy as Uchain/32|i|−2 for |i| � 1. Since the num-
ber of ith polymer chains for |i| � 1 is 2 × 3|i|−1, the total
energy relaxed by all ith polymer chains can be calculated
as Ui = 2Uchain/3|i|−1 for |i| � 1 and Ui = 2Uchain for i = 0
[Fig. 4(b)]. Overall, the effective energy relaxed by fracturing
a second-order loop on the crack path is equal to

∑∞
−∞ Ui =

8Uchain. Since there are two chains in a second-order loop,
based on the aforementioned definition, we can get U2l =∑∞

−∞ Ui/2 = 4Uchain and γ2l = U2l/Uideal = 2. Notably, the
fracture effectiveness of polymer chains other than the most
affected chains by a second-order loop is approximately 1 (as
shown in Supplemental Material Figs. S1 and S5 [29]), and
thus we regard these chains as unaffected chains to simplify
the calculation. In addition, both theory and simulations have
indicated that the densities of higher-order loops are negligi-
bly low in tetra-arm networks [26]; therefore, we mainly focus
on the second-order loops in the current study.
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FIG. 4. (a) Schematic illustration of a fractured second-order
loop on the crack path and deformed neighboring chains. (b) The
energy relaxed by all ith polymer chains Ui normalized by the frac-
ture energy of a second-order loop on the crack path U0, compared
with that of an ideal chain. (c) Schematic illustration of a fractured
chain closest to a first-order dangling chain and deformed neigh-
boring chains. (d) The energy relaxed by all ith polymer chains Ui

normalized by the fracture energy of the most affected chain by a
first-order dangling chain on the crack path U0, compared with that of
an ideal chain. (e) Schematic illustration of a fractured chain closest
to a second-order dangling chain and deformed neighboring chains.
(f) The energy relaxed by all ith polymer chains Ui normalized by the
fracture energy of the most affected chain by a second-order dangling
chain on the crack path U0, compared with that of an ideal chain. (g)
Schematic illustration of a fractured chain closest to a third-order
dangling chain and deformed neighboring chains. (h) The energy
relaxed by all ith polymer chains Ui normalized by the fracture
energy of the most affected chain by a third-order dangling chain
on the crack path U0, compared with that of an ideal chain.

When the defect is a first-order dangling chain, denoted
as X = 1d , the most affected polymer chain is the closest
neighbor of the defect as illustrated in Fig. 4(c). The fracture
force Ff of the most affected chain on the crack path (denoted
as i = 0) is shared by two neighboring chains at one end of the
chain (denoted as i = −1) and by three neighboring chains at
the other end of the chain (denoted as i = +1). The force in
each of the ith polymer chains is further shared by three neigh-
boring (i − 1)th or (i + 1)th chains. The total energy stored in

the ith polymer chains can be calculated as Ui = Uchain for i =
0, Ui = Uchain/(2 × 3|i|−1) for i � −1, and Ui = Uchain/3|i| for
i � 1 [Fig. 4(d)]. Overall, the effective energy relaxed by frac-
turing the closest chain to the first-order dangling chain can be
calculated as U1d = ∑∞

−∞ Ui = 2.25Uchain, with its fracture
effectiveness equal to γ1d = U1d/Uideal = 1.125. When the
defect is a second-order dangling chain, denoted as X = 2d ,
the most affected polymer chain is the closest neighbor of
the defect as illustrated in Fig. 4(e). The total energy stored
in the ith polymer chains can be calculated as Ui = Uchain

for i = −1, 0, Ui = Uchain/3|i| for i � 1, and Ui = Uchain/3|i|−1

for i � −2 [Fig. 4(f)]. Overall, the effective energy relaxed
by fracturing the closest chain to a second-order dangling
chain can be calculated as U2d = ∑∞

−∞ Ui = 3Uchain with its
fracture effectiveness equal to γ2d = U2d/Uideal = 1.5. When
the defect is a third-order dangling chain, denoted as X = 3d ,
the defect turns its closest neighbor into a first-order dangling
chain and the most affected polymer chain is the closest neigh-
bor of the effectively first-order dangling chain as illustrated
in Fig. 4(g). The total energy stored in and relaxed by all ith
polymer chains is the same as that for a first-order dangling
chain [Fig. 4(h)]. Overall, the effective energy relaxed by
fracturing the most affected chain by the third-order dangling
chain can be calculated as U3d = ∑∞

−∞ Ui = 2.25Uchain with
its fracture effectiveness equal to γ3d = U3d/Uideal = 1.125.
When the defect is a fourth-order dangling chain, denoted as
X = 4d , the defect affects no polymer chains in the tetra-arm
network. In addition, the fracture effectiveness of polymer
chains other than the most affected chains by the dangling
chains is approximately 1 (as shown in Supplemental Mate-
rial Figs. S2– S5 [29]), and thus we regard these chains as
unaffected chains to simplify the calculation.

The introduction of defects into an ideal polymer network
not only alters the fracture effectiveness of the most affected
chains, but also reduces the density of active chains. The
tetra-arm network is composed of tetra-arm macromers [24];
therefore, a defect X in the tetra-arm network is introduced
by the corresponding macromer(s) with the defect X . Let CX

and Cideal be the ratios of the numbers of macromers with
defect X and defect-free macromers over the total number of
macromers that constitute the polymer network, respectively.
The number conservation of macromers imposes

∑
X CX +

Cideal = 1. Once cross-linked, the macromers form the poly-
mer network with defects. We denote N inactive

X and Naffected
X as

the number of inactive chains and the most affected chains
due to the presence of defect X , respectively, and Nunaffected

as the number of unaffected chains. The number conserva-
tion of polymer chains imposes

∑
X (Naffected

X + N inactive
X ) +

Nunaffected = N , where N is the total number of polymer chains
in the corresponding defect-free ideal network. Next, we will
calculate the Naffected

X and N inactive
X corresponding to each type

of macromer with defect X in the tetra-arm network.
For a tetra-arm network containing only the second-order

loops, there exist no inactive polymer chains N inactive
2l = 0.

Among the active chains, the number of affected chains by
the second-order loops is equal to Naffected

2l = (C2l/2)N , since
half of the arms of defect macromers are associated with the
second-order loops. For a tetra-arm network containing only
the first-order dangling chains, the number of inactive chains
is equal to N inactive

1d = (C1d/4)N , since one-fourth of the arms
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FIG. 5. Normalized intrinsic fracture energy and normalized shear modulus of polymer networks containing only one type of topological
defect. (a) Second-order loop with γ2l = 2 and ε2l = 1

2 . (b) First-order dangling with γ1d = 9
8 and ε1d = 8

9 . (c) Second-order dangling with
γ2d = 3

2 and ε2d = 2
3 . (d) Third-order dangling with γ2d = 9

8 and ε2d = 8
9 . (e) Fourth-order dangling with γ2d = 0 and ε2d = 0. The intrinsic

fracture energy and shear modulus are normalized by the corresponding values of defect-free polymer networks.

of defect macromers are inactive arms. The number of the
most affected chains due to the presence of the first-order
dangling chains is equal to Naffected

1d = (C1d/2)N , since two
defect macromers possess one affected chain. For a tetra-arm
network containing only the second-order dangling chains, the
introduction of defect macromers only increases the length of
originally existing chains. In other words, all arms of defect
macromers are inactive arms, giving the number of inactive
chains as N inactive

2d = (C2d )N . The number of affected chains
due to the presence of the second-order dangling chains are
Naffected

2d = (C2d/2)N , since two defect macromers possess one
affected chain. For a polymer network containing only the
third-order dangling chains, the presence of a macromer with
three inactive arms leads to one more inactive chain from the
neighboring macromer. Therefore, we can calculate the num-
bers of inactive chains and affected chains due to the presence
of the third-order dangling chains as N inactive

3d = (5C3d/4)N
and Naffected

3d = (C3d/2)N , respectively. For a polymer network
containing only the fourth-order dangling chains, the defect
macromers have no topological connection with the poly-
mer network, thereby possessing no affected chains, namely,
Naffected

4d = 0. The introduced number of inactive chains is
N inactive

4d = C4d N . The densities of inactive chains and affected
chains in polymer networks containing one specific type of
defect are summarized in Table I.

Overall, the intrinsic fracture energy of the polymer
network with defects normalized by that of the correspond-
ing defect-free ideal network can be expressed as � =∑

X γX (Naffected
X /N ) + (Nunaffected/N ). Given Nunaffected = N −

∑
X (Naffected

X + N inactive
X ), we can further express the nor-

malized intrinsic fracture energy of polymer networks with
defects as

� =
∑

X

(γX − 1)
Naffected

X

N
−

∑

X

N inactive
X

N
+ 1, (2)

where the first term (γX − 1)Naffected
X /N increases the intrinsic

fracture energy of the polymer network by increasing the frac-
ture effectiveness of the most affected chains (i.e., γX � 1),
and the second term −∑

X N inactive
X /N decreases the intrinsic

fracture energy of the polymer network by introducing inac-
tive chains.

We further derive a defect-network elastic model to calcu-
late the shear modulus of polymer networks with topological
defects by calculating the elastic effectiveness of the most
affected chains εX [14,26] and the densities of affected chains
Naffected

X and inactive chains N inactive
X when the defect X is

introduced (Supplemental Material). Overall, the shear mod-
ulus of polymer networks with various defects normalized by
that of the corresponding defect-free ideal network can be
expressed as

G =
∑

X

(εX − 1)
Naffected

X

N
−

∑

X

N inactive
X

N
+ 1, (3)

where the first term (εX − 1)Naffected
X /N decreases the shear

modulus of the polymer network since εX < 1, and the second
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TABLE I. Normalized numbers of inactive chains, unaffected chains, and affected chains, as well as the fracture effectiveness and elastic
effectiveness of affected chains in defect-network fracture and elastic models for tetra-arm polymer networks containing various types of
topological defects.

Defect-network fracture model Defect-network elastic model

Nunaffected/N N inactive
X /N N affected

X /N γX Nunaffected/N N inactive
X /N N affected

X /N εX

Second-order loop 1 − 0.5C2l 0 0.5C2l 2 1 − 0.5C2l 0 0.5C2l 0.5
First-order dangling 1 − 0.75C1d 0.25C1d 0.5C1d 9/8 1 − 1.75C1d 0.25C1d 1.5C1d 8/9
Second-order dangling 1 − 1.5C2d C2d 0.5C2d 3/2 1 − 1.5C2d C2d 0.5C2d 2/3
Third-order dangling 1 − 1.75C3d 1.25C3d 0.5C3d 9/8 1 − 2.75C3d 1.25C3d 1.5C3d 8/9
Fourth-order dangling 1 − C4d C4d 0 0 1 − C4d C4d 0 0

term −∑
X N inactive

X /N also decreases the shear modulus of the
polymer network by introducing inactive chains.

Table I summarizes the normalized numbers of inactive
chains, unaffected chains, and affected chains as well as the
fracture effectiveness and elastic effectiveness of affected
chains. We also systematically compare the impact of topo-
logical defects on fracture energy and elasticity of the same
polymer networks as summarized in Fig. 5 and Table I. In
Fig. 5, we plot the � and G of tetra-arm networks containing
each type of topological defect as functions of the corre-
sponding CX . It can be seen that the presence of second-order
loops in the polymer network increases its intrinsic fracture
energy but decreases its shear modulus. In addition, when
dangling chains are introduced, although both the instrinsic
fracture energy and shear modulus decrease, the reduction of
the intrinsic fracture energy is less dramatic.

IV. EXPLANATION OF EXPERIMENTAL DATA

Next, we will use our defect-network fracture model to
explain the reported experimental data on the intrinsic fracture
energy of tetra-arm polymer networks with varying densities
of first-, second-, third-, or fourth-order dangling chains [9].
The amounts of various orders of dangling chains can be
readily tuned by controlling the reaction efficiency p between
two arms that form a polymer chain. The formation of various
orders of loops is negligible according to the experiments,

theory, and simulations [9,26]. Applying the Miller-Mascoko
theory [30,31], we calculate C1d = 4(1 − P)3P, C2d = 6(1 −
P)2P2, C3d = 4(1 − P)P3, and C4d = P4, where P = pP3 +
1 − p is the probability of forming a dangling chain for one of
the arms in a tetra-arm macromer [31] [Fig. 6(a)]. Following
the relations between CX , N inactive

X , and Naffected
X , and using

Eq. (2), we can calculate the normalized intrinsic fracture
energy of the tetra-arm network � as a function of the reaction
efficiency p,

� = 1 − 3

4
(1 − P)3P − 9

2
(1 − P)2P2 − 19

4
(1 − P)P3 − P4.

(4)

In addition, with N inactive
X and Naffected

X , and Eq. (3), we calcu-
late the normalized shear modulus of the tetra-arm network
G as a function of the reaction efficiency p (see details in the
Supplemental Material),

G = 1 − 5

3
(1 − P)3P − 7(1 − P)2P2 − 17

3
(1 − P)P3 − P4.

(5)
One intriguing yet unexplained discovery from the exper-

iments [9] is that as the reaction efficiency p decreases (i.e.,
as the defect density increases) the intrinsic fracture energy of
the polymer network decreases at a rate slower than the shear
modulus decreases [Fig. 6(b)]. Our model can readily explain
this phenomenon. While the dangling chains introduce the
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, Experiments from [9]
, Defect-network fracture model

G
G

, Experiments from [9]
, Defect-network elastic model

G

1.0 0.8 0.6 0.4 0.2
0.0

0.2

0.4

0.6

0.8

1.0

Reaction efficiency p
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

0.0

0.2

0.4

0.6

0.8

1.0

C
X

(a) (b)

1dC
2dC

3dC

4dC

FIG. 6. (a) Ratios of the numbers of macromers with various orders of dangling chains over the total number of macromers that constitute
the tetra-arm polymer network (i.e., C1d , C2d , C3d , and C4d ) as functions of the reaction efficiency p. (b) Comparison of the normalized intrinsic
fracture energy and the normalized shear modulus between the experiment results [9] and the defect-network models.
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same amount of inactive polymer chains (i.e., N inactive
X ) for

both fracture and elasticity of the polymer network, they
increase the fracture effectiveness [i.e., γX � 1 in Eq. (2)] of
the most affected chains but decrease the elastic effectiveness
[i.e., εX < 1 in Eq. (3)] of the most affected chains. Therefore,
the intrinsic fracture energy reduces slower than the shear
modulus does with the increase of the defect density. As
plotted in Fig. 6(b), our defect-network models also match
well with the experimental data [9] on the intrinsic fracture
energy � and shear modulus G of the tetra-arm network across
a wide range of reaction efficiency and densities of various
dangling chains.

V. SUMMARY AND DISCUSSION

We have developed a defect-network fracture model that
characterizes the impact of topological defects on the intrinsic
fracture energy of polymer networks. Based on the model, we
explain the experimental results [9] on the intrinsic fracture
energy of nearly defect-free polymer networks and polymer
networks with varying densities of first-, second-, third-, or

fourth-order dangling chains. We show that the fracture en-
ergy of polymer networks should account for the energy
from multiple layers of polymer chains adjacent to the crack.
Our model further suggests that, although the presence of
topological defects inevitably decreases the shear moduli of
polymer networks, it can enhance the intrinsic fracture energy
considerably by introducing second-order loops while sup-
pressing dangling chains—a theoretical prediction that can be
validated by future experiments. With the recent development
in engineering [32,33] and characterizing[34–36] topological
defects in polymer networks, our model opens an avenue to
establishing a relationship between fracture energy of polymer
networks and their topological structures.
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1. Effects of topological distance of fractured chains from topological defects 

In the model, we regard polymer chains other than the most affected chains as unaffected ideal 

chains to simply the calculation. To validate this assumption, we systematically calculate the 

fracture effectiveness of polymer chains as a function of the topological distance m of fractured 

polymer chains from different types of topological defects.  

We start with a polymer network containing 2nd-order loops. When topological distance m is 

equal to 1 [Fig. S1(b)], the 2nd-order loop is located at the 1st adjacent layer attach to the fractured 

polymer chain on the crack path, at which each of the chains shares the maximum mechanical 

force on the order of / 3cF  and contributes to the bond energy on the order of 0 / 9U . The total 

energy stored at the 1st adjacent layer containing 2nd-order loops is on the order of 0 / 3U , i.e., 

1 0 / 3U U  , which is the same as that attached to an ideal chain. The 2nd adjacent layer contains 

5 polymer chains in total, among which 3 active chains share the maximum mechanical force on 

the order of / 9cF  with the total energy on the order of 0 / 27U  and the other 2 active chains share 

the maximum mechanical force on the order of / 3cF  with the total energy on the order of 02 / 9U . 

The total energy stored at the 2nd adjacent layer containing 2nd-order loops is on the order of 

07 / 27U , i.e., 2 07 / 27U U  . The energy stored at the other end of adjacent layers shows the same 

energy distributions as that attached to an ideal chain due to the same topological structures. In 

summary, the normalized energy distributions around crack path when 1m  can be expressed as  



3 
 

2

0

7
2

27 3
1

1
3
1 0

1
1

3

i

i

i

i

iU

U
i

i



   
   
 

 

    (S1) 

Similarly, we can derive the normalized energies contributed by the adjacent layers when 2m   

[Fig. S1(c)] expressed as  
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The expression of the normalized energies contributed by the adjacent layers reads as 
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For polymer networks containing 1st-order dangling chains, when the topological distance is 

equal to 1 [Fig. S2(b)], the 1st-order dangling chain is located at the 1st layer adjacent to the primary 

polymer chain at the crack path, at which each of the chains shares the maximum mechanical force 

on the order of / 3cF  and contributes to the energy on the order of 0 / 9U . The total energy stored 
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at the 1st adjacent layer containing 1st-order dangling chains is on the order of 0 / 3U , i.e., 

1 0 / 3U U  . The 2nd layer adjacent contains 8 active chains in total, among which 6 chains share 

the maximum mechanical force on the order of / 9cF  with the total energy on the order of 02 / 27U  

and the other 2 chains share the maximum mechanical force on the order of / 6cF  with the total 

energy on the order of 0 /18U . The total energy stored at the 2nd adjacent layer containing 1st-order 

loops is on the order of 07 / 54U , i.e., 2 07 / 54U U  . In summary, the normalized energy 

distributions around crack path when 1m  can be expressed as 
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Similarly, we can derive the normalized energies contributed by the adjacent layers when 2m   

[Fig. S2(c)) expressed as  
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The expression of the normalized energy distributions for the scission of the chain with the 

topological distance of m away from 1st-order dangling chains is 
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For polymer networks containing 2nd-order dangling chains, when the topological distance is 

equal to 1 [Fig. S3(b)], the 2nd-order dangling chain is located at the 1st layer adjacent to the 

primary polymer chain at the crack path, at which each of the chains shares the maximum 

mechanical force on the order of / 3cF  and contributes to the bond energy on the order of 0 / 9U . 

In total, the energy stored at the 1st adjacent layer containing 2nd-order dangling chains is on the 

order of 0 / 3U , i.e., 1 0 / 3U U  . The 2nd layer adjacent contains 7 polymer chains in total, among 

which 6 chains share the maximum mechanical force on the order of / 9cF  with the total energy 

on the order of 02 / 27U  and the other 1 chain share the maximum mechanical force on the order 

of / 3cF  with the bond energy on the order of 0 / 9U . The total energy stored at the 2nd adjacent 

layer containing 2nd-order dangling loops is on the order of 06 / 27U , i.e., 2 06 / 27U U  . In 

summary, the normalized energy distributions around crack path when 1m  can be expressed as 
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Similarly, we can derive the normalized energies contributed by the adjacent layers when 2m    

[Fig. S3(c)] expressed as  
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The expression of the normalized energy distributions for the scission of the chain with the 

topological distance of m away from 2nd-order dangling chains is 
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For polymer networks containing 3rd-order dangling chains, when the topological distance is 

equal to 1 [Fig. S4(b)], the 3rd-order dangling chain is located at the 1st layer adjacent to the primary 

polymer chain at the crack path, at which each of the chains shares the maximum mechanical force 

on the order of / 3cF  and contributes to the bond energy on the order of 0 / 9U . The total energy 

stored at the 1st adjacent layer containing secondary loops is on the order of 0 / 3U , i.e., 

1 0 / 3U U  , which is the same as that of ideal chains. The 2nd layer adjacent contains 8 polymer 

chains in total, among which 6 chains share the maximum mechanical force on the order of / 9cF  

with the bond energy in total on the order of 02 / 27U  and the other 2 chains share the maximum 
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mechanical force on the order of / 6cF  with the total energy on the order of 0 /18U . The total 

energy stored at the 2nd adjacent layer containing 3rd-order is on the order of 07 / 54U , i.e., 

2 07 / 54U U  . In summary, the normalized energy distributions around crack path when 1m  

can be expressed as 
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Similarly, we can derive the normalized energies contributed by the adjacent layers when when 

2m   [Fig. S4(c)] as  
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The expression of the normalized energy distributions for the scission of the chain with the 

topological distance of m away from 3rd-order dangling chains is 
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Figure S5 summarizes the fracture effectiveness of the affected polymer chains by various 

topological defects as a function of topological distance m, validating our assumption that the 

polymer chains other than the most affected chains can be regarded as unaffected ideal chains. 

2. Defect-network elastic model 

2.1. Elasticity of defect-free ideal polymer networks 

We first recall the classical phantom network model to calculate the shear modulus of a defect-

free ideal polymer network. Let chainM be the chain length (i.e., the number of monomers in an 

active chain) in polymer networks and f  be the functionality of crosslinkers in the polymer 

network. Each ideal polymer chain is equally connected to 1f   neighboring chains on each of its 

two ends (denoted as 1i    or 1 ). The force in a chain with 1i    or 1  is further equally 

connected to the neighboring chains on its left or right side (denoted as 2i    or 2 ), respectively. 

In this way, the effective chain length of all thi polymer chains can be calculated as 

 / 1
i

i chainM M f  . Overall, the total effective chain length by elastically deforming an ideal 

polymer chain can be calculated as 

2ideal i chain

f
M M M

f





 
     (S13) 
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Because of the conservation of monomers, the increase of the chain length from chainM  to idealM  

in a phantom network leads to a reduced number density of active chains in an equivalent affine 

polymer network. Let v be the number density of active polymer chains in a phantom polymer 

network. Its shear modulus is equal to     1/ / 2ideal chain idealG kT v M M v f f    with kT  being 

the product of Boltzmann constant and temperature. 

2.2. Elasticity of polymer networks with topological defects 

Elastic effectiveness of affected chains. Next, we will present a defect-network elastic model 

to predict the shear modulus of polymer networks with cyclic loops and dangling chains.  We focus 

on tetra-arm networks in this work ( 4f  ). The introduction of a cyclic loop or a dangling chain 

into an ideal polymer network can affect its shear modulus by changing the effective chain length 

affected by the defect and/or by introducing inactive polymer chains. We denote the effective chain 

length for deforming the most affected polymer chain by the defect X as XM ; we further define 

the elastic effectiveness of this polymer chain is defined as  /X ideal XM M  , where idealM  is the 

effective chain length of an ideal chain, following the recently developed real elastic network 

model [1, 2]. We next calculate the XM  and X  for various topological defects in a tetra-arm 

network. The defects in the polymer network are assumed to be sparsely distributed and have no 

interaction with each other [2]. 

When the defect is a 2nd-order loop, denoted as X=2l, the most affected chains are the chains 

in the loop itself. As illustrated in Fig. S6(a), the effective chain length of one 2nd-order loop is 

/ 2chainM . One 2nd-order loop is equally connected to the 2 neighboring chains on each its ends 

(denoted as 1i    or 1 ), the effective chain length of which is also equal to / 2chainM . Each 
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chain with 1i    or 1  is further connected to the 3 neighboring chains on its left or right side 

(denoted as 2i    or 2 ), respectively. In this way, the effective chain length of all thi  polymer 

chains can be calculated as 10.5 / 3 i
i chainM M   for 1i  [ Fig. S6(b)]. Overall, the total effective 

chain length by deforming a 2nd-order loop is equal to 2i chainM M




 . Since there are two chains 

in a 2nd-order loop, based on the aforementioned definition, we can get 2 2 4l i chainM M M




   

and 2 2/ 0.5l ideal lM M    where 2ideal chainM M  is the effective chain length by elastically 

deforming an ideal polymer chain.  Notably, according to the previous calculations [2], the elastic 

effectiveness of polymer chains other than the most affected by a 2nd-order loop is approximately 

1, and thus we regard these chains as unaffected chains to simplify the calculation. 

When the defect is a 1st-order dangling chain, denoted as X=1d, the most affected polymer 

chain is the closest neighbor of the defect as illustrated in Fig. S6(c). The most affected chain is 

connected to 2 neighboring chains at one end of the chain (denoted as 1i   ) and to 3 neighboring 

chains at the other end of the chain (denoted as 1i   ). Each thi  polymer chain is further equally 

connected to 3 neighboring  1
th

i   chains or  1
th

i   chains. The effective chain length of all thi  

polymer chains can be expressed as i chainM M  for 0i  ,  1/ 2 3 i
i chainM M    for 1i   , and 

1/ 3 i
i chainM M   for 1i   [Fig. S6(d)]. Overall, the effective chain length by elastically 

deforming the closest chain to the 1st-order dangling chain can be calculated as 

1 2.25d i chainM M M




   with its elastic effectiveness equal to 1 1/ 8 / 9d ideal dM M   . When 

the defect is a 2nd-order dangling chain, denoted as X=2d, the most affected polymer chain is the 
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closet neighbor of the defect as illustrated in Fig. S6(e). The effective chain length of all thi  

polymer chains can be calculated as i chainM M  for 1i   , 0, / 3 i
i chainM M  for 1i  , and 

1/ 3 i
i chainM M   for 2i    [Fig. S6(f)]. Overall, the total effective chain length by elastically 

deforming the most affected chain by a 2nd-order dangling chain can be calculated as 

2 3d i chainM M M




   with its elastic effectiveness equal to 2 2/ 2 / 3d ideal dM M   . When the 

defect is a 3rd-order dangling chain, denoted as X=3d, the defect turns its closet neighbor into a 1st-

order dangling chain and the most affected polymer chain is the closest neighbor of the effectively 

1st-order dangling chain as illustrated in Fig. S6(h). Overall, the total effective chain length by 

elastically deforming the most affected chain by a 3rd-order dangling chain can be calculated as 

3 2.25d i chainM M M




   with its elastic effectiveness equal to 3 3/ 8 / 9d ideal dM M   . When 

the defect is a 4th-order dangling chain, denoted as X=4d, the defect affects no polymer chains in 

the tetra-arm network. In addition, the fracture effectiveness of polymer chains other than the most 

affected chains by the dangling chains is approximately 1 [1], and thus we regard these chains as 

unaffected chains to simplify the calculation. 

Numbers of affected and inactive chains. The introduction of topological defects not only 

affects the elastic effectiveness of affected polymer chains, but also alters the chain densities. We 

focus on a tetra-arm polymer network, a defect X in which is introduced by the corresponding 

macromer(s) with the defect X. Let XC and idealC  be the ratios of the numbers of macromers with 

defect X and defect-free macromers over the total number of macromers that constitute the polymer 

network, respectively. The number conservation of macromers impose 1X ideal
X

C C  . Once 
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crosslinked, the macromers form the polymer network with defects. We denote inactive
XN  and 

affected
XN  as the number of inactive chains and the most affected chains due to the presence of defect 

X, respectively. Let unaffectedN  be the number of unaffected ideal chains. The number conservation 

of polymer chains imposes  affected inactive unaffected
X X

X

N N N N   , where N  is the total number of 

polymer chains in the corresponding defect-free ideal network. Next, we will calculate the inactive
XN  

and affected
XN  corresponding to each type of macromers with defect X in the tetra-arm polymer 

network.  

For a tetra-arm network containing only the 2nd-order loops, there exist no inactive polymer 

chains inactive
2 0lN  . Among the active chains, the number of affected chains by the 2nd-order loops 

is equal to  affected
2 2 / 2l lN C N , since two of the arms of defect macromers are associated with the 

2nd-order loops.  For a polymer network containing only the 1st-order dangling chains, the number 

of inactive chains is equal to  inactive
1 1 / 4d dN C N  , since one-fourth arms of f-arm defect 

macromers are inactive. Unlike the defect-network fracture model, the number of the most affected 

chain by 1st-order dangling chains is affected
1 11.5d dN C N , since two defect macromers possess all 

three affected chains. For a polymer network containing only the 2nd-order dangling chains, all 

arms of defect macromers are inactive arms, giving the number of inactive chains as 

inactive
2 2d dN C N . The number of affected chain chains due to the presence of 2nd-order dangling 

chains are affected
2 20.5d dN C N , since two defect macromers possess one affected chain. For a 

polymer network containing only the 3rd-order dangling chains, the presence of a macromer with 

three inactive arms leads to one more inactive chain from the neighboring macromer. Therefore, 
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we can calculate the numbers of inactive chains and affected chains due to the presence of the 3rd-

order dangling chains as  inactive
3 35 / 4d dN C N  and affected

3 31.5d dN C N , respectively. For a polymer 

network containing only the 4th-order dangling chains, the defect macromers have no topological 

connection with the polymer network, thereby possessing no affected chains, namely, affected
4 0dN  . 

The introduced number of inactive chains is inactive
4 4d dN C N .  

Shear modulus. Overall, the shear modulus of a polymer network containing defects 

normalized by that of the corresponding defect-free ideal network can be expressed as 

 affected unaffected/ /X X
X

G N N N N  , where  unaffected affected inactive/ 1 / /X X
X

N N N N N N   . 

Alternatively, the normalized shear modulus can be expressed as 

 
affected inactive

1 1X X
X

X X

N N
G

N N
        (S14) 

where the first term   affected1 /X XN N   decreases the shear modulus of the polymer network since 

1X  , and the second term inactive /X
X

N N also decreases the shear modulus of the polymer 

network by introducing inactive chains. 

3. Calculation of normalized intrinsic fracture energy and shear modulus for tetra-arm 

polymer networks with various types of dangling chains 

We apply the Miller Mascoko theory [3, 4] to calculate the number density of each type of 

macromer in hydrogels formed by tetra-arm polymer precursors. To apply the theory, we focus on 

A-B type tetra-arm hydrogels formed by macromer A and macromer B. We presume that 1) all 

functional end groups of the same type of macromers are equally reactive and 2) all end groups 

react independently. Let P be the probability of forming dangling chains for one of the arms in 
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macromers A and macromers B. Given the reaction efficiency p, we can get 3 1P pP p   . Given 

identified P, the densities of ideal macromers, 1st-order macromers, 2nd-order macromers, 3rd-order 

macromers, and 4th-order macromers are equal to  4
1idealC P  ,  3

1 4 1dC P P  , 

 2 2
2 6 1dC P P  ,   3

3 4 1dC P P  , and 4
4dC P . Once the chemical crosslinking is initiated, 

the solution of macromers form polymer networks containing various orders of dangling chains. 

Based on the aforementioned analysis, in our defect-network fracture model, the number of the 

most affected chains by 1st-/2nd-/3rd/4th-order dangling chains are equal to  affected
1 10.5d dN C N , 

 affected
2 20.5d dN C N ,  affected

3 30.5d dN C N , affected
4 0dN  respectively. The number of inactive 

chains is equal to  inactive
1 2 3 40.25 1.25X d d d d

X

N C C C C N    . Using Eq. (2), the normalized 

fracture energy of a tetra-arm polymer network is equal to 

     

1 2 3 4

3 2 2 3 4

3 3 19
1

16 4 16
3 9 19

1 1 1 1
4 2 4

d d d dC C C C

P P P P P P P

     

       
 (S15) 

In the defect-network elastic model, the normalized densities of the most affected chains by 

1st-/2nd-/3rd/4th-order dangling chains are equal to  affected
1 11.5d dN C N ,  affected

2 20.5d dN C N , 

 affected
3 31.5d dN C N , affected

4 0dN   respectively. The number of inactive chains is equal to 

 inactive
1 2 3 40.25 1.25X d d d d

X

N C C C C N    . Using Eq. (3), the normalized shear modulus of a 

tetra-arm polymer network is equal to 
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     

1 2 3 4

3 2 2 3 4

5 7 17
1

12 6 12
5 17

1 1 7 1 1
3 3

d d d dG C C C C

P P P P P P P

    

       
  (S16) 
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Figure S1. The effect of topological distance of the fractured chain on the crack path from a 

2nd-order loop. Schematic illustration of fracturing a, the most affected chain by a 2nd-order loop 

on the crack path (i.e, 0m  ), b, the chain with topological distance of 1 from a 2nd-order loop 

(i.e, 1m ), and c, the chain with topological distance of 2 from a 2nd-order loop (i.e, 2m  ). The 

normalized energy distributions (i.e., 0/iU U  versus thi  adjacent layer) for fracturing d, the most 

affected chain by a 2nd-order loop in polymer networks (i.e, 0m  ), e, the chain with topological 

distance of 1 from a 2nd-order loop (i.e, 1m ), and f, the chain with topological distance of 2 from 

a 2nd-order loop (i.e, 2m  ). 
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Figure S2. The effect of topological distance of fractured chain on the crack path from 1st-

order dangling chain. Schematic illustration of fracturing a, the most affected chain by 1st-order 

dangling chain (i.e, 0m  ), b, the chain with topological distance of 1 from 1st-order dangling 

chain (i.e, 1m ), and c, the chain with topological distance of 2 from 1st-order dangling chain (i.e, 

2m  ). The normalized energy distributions (i.e., 0/iU U  versus -thi  adjacent layer) for fracturing 

d, the most affected chain by 1st-order dangling chain in polymer networks (i.e, 0m  ), e, the 

chain with topological distance of 1 from 1st-order dangling chain (i.e, 1m ), and f, the chain with 

topological distance of 2 from 1st-order dangling chain (i.e, 2m  ). 
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Figure S3. The effect of topological distance of fractured chain on the crack path from 2nd-

order dangling chain. Schematic illustration of fracuring of a, the most affected chain by 2nd-

order dangling chain (i.e, 0m  ), b, the chain with topological distance of 1 from 2nd-order 

dangling chain (i.e, 1m ), and c, the chain with topological distance of 2 from 2nd-order dangling 

chain (i.e, 2m  ). The normalized energy distributions (i.e., 0/iU U  versus -thi  adjacent layer) 

for fracturing of d, the most affected chain by 2nd-order dangling chain in polymer networks (i.e, 

0m  ), e, the chain with topological distance of 1 from 2nd-order dangling chain (i.e, 1m ), and 

f, the chain with topological distance of 2 from 2nd-order dangling chain (i.e, 2m  ). 
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Figure S4. The effect of topological distance of fracturing chain on the crack path from 3rd-

order dangling chain. Schematic illustration of the scission of a, the most affected chain by 3rd-

order dangling chain (i.e, 0m  ), b, the chain with topological distance of 1 from 3rd-order 

dangling chain (i.e, 1m ), and c, the chain with topological distance of 2 from 3rd-order dangling 

chain (i.e, 2m  ). The normalized energy distributions (i.e., 0/iU U  versus -thi  adjacent layer) 

for fracturing d, the most affected chain by 3rd-order dangling chain in polymer networks (i.e, 

0m  ), e, the chain with topological distance of 1 from 3rd-order dangling chain (i.e, 1m ), and 

f, the chain with topological distance of 2 from 3rd-order dangling chain (i.e, 2m  ). 
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Figure S5. Fracture effectiveness of various topological defects as a function of topological 

distance m. 
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Figure S6. a, Schematic illustration of an elastically deformed 2nd-order loop and neighboring 

chains. b, The effective chain length of all thi polymer chains iM  by elastically deforming a 2nd-

order loop normalized by the effective chain length of 0th polymer chains 0M . c, Schematic 

illustration of an elastically deformed chain closest to a 1st-order dangling chain and neighboring 

chains. d, The effective chain length of all thi polymer chains iM  by elastically deforming the 
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closet chain to a 1st-order dangling chain normalized by the chain length of 0th polymer chain 0M . 

e, Schematic illustration of an elastically deformed chain closest to a 2nd-order dangling chain and 

neighboring chains. f, The effective chain length of all thi polymer chains iM  by elastically 

deforming the closet chain to a 2nd-order dangling chain normalized by the chain length of 0th 
polymer chain 0M . g, Schematic illustration of an elastically deformed chain closest to a 3rd-order 

dangling chain and neighboring chains. h, The effective chain length of all thi polymer chains iM  

by elastically deforming the closet chain to a 3rd-order dangling chain normalized by the chain 
length of 0th polymer chain 0M .  
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