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a b s t r a c t 

Recently, ferromagnetic soft continuum robots – a type of slender, thread-like robots that 

can be steered magnetically – have demonstrated the capability to navigate through the 

brain’s narrow and winding vasculature, offering a range of captivating applications such 

as robotic endovascular neurosurgery. Composed of soft polymers with embedded hard- 

magnetic particles as distributed actuation sources, ferromagnetic soft continuum robots 

produce large-scale elastic deflections through magnetic torques and/or forces generated 

from the intrinsic magnetic dipoles under the influence of external magnetic fields. This 

unique actuation mechanism based on distributed intrinsic dipoles yields better steering 

and navigational capabilities at much smaller scales, which differentiate them from previ- 

ously developed continuum robots. To account for the presence of intrinsic magnetic po- 

larities, this emerging class of magnetic continuum robots provides a new type of active 

structure – hard-magnetic elastica – which means a thin, elastic strip or rod with hard- 

magnetic properties. In this work, we present a nonlinear theory for hard-magnetic elas- 

tica, which allows accurate prediction of large deflections induced by the magnetic body 

torque and force in the presence of an external magnetic field. From our model, explicit 

analytical solutions can be readily obtained when the applied magnetic field is spatially 

uniform. Our model is validated by comparing the obtained solutions with both experi- 

mental results and finite element simulations. The validated model is then used to calcu- 

late required magnetic fields for the robot’s end tip to reach a target point in space, which 

essentially is an inverse problem challenging to solve with a linear theory or finite-element 

simulation. Providing facile routes to analyze nonlinear behavior of hard-magnetic elastica, 

the presented theory can be used to guide the design and control of the emerging class of 

magnetically steerable soft continuum robots. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

Unlike conventional robots with discrete joints, continuum robots produce motion through the generation of smooth

curves via large scale elastic deformation, similar to the tentacles or tongues of animals ( Camarillo et al., 2009 ; Dalvand

et al., 2018 ; Edelmann et al., 2017 ; Renda et al., 2012 ; Robinson and Davies, 1999 ) and hence can be applied to important
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Fig. 1. (a) Schematic of the ferromagnetic soft continuum robot with a magnetically responsive tip. ( b ) Schematic of the magnetically responsive tip 

with programmed uniform magnetization M resulting from the hard-magnetic particles embedded in the robot’s body made of a soft polymer matrix. (c) 

Illustration of the active steerability of the ferromagnetic soft continuum robot navigating in a complex neurovasculature with an aneurysm. (d) Experi- 

mental demonstration ( Kim et al., 2019 ) of the ferromagnetic soft continuum robot navigating in a 3D cerebrovascular phantom network. Adapted from Ref 

Kim et al. (2019) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

medical applications such as minimally invasive surgery ( Fu et al., 2009 ; Menaker et al., 2018 ; Runciman et al., 2019 ). De-

spite the ability to carry out tasks under remote control, existing continuum robots have demonstrated limited practical

utility, mainly because of miniaturization challenges inherent in their conventional actuation mechanisms based on pulling

mechanical wires or inflating pneumatic or hydraulic chambers ( Clogenson et al., 2014 ; Ranzani et al., 2015 ; Shepherd et al.,

2011 ). Recent work by Kim et al., 2019 aiming at tackling these challenges has developed sub-millimeter-scale, soft-bodied,

and magnetically steerable continuum robots – so-called ferromagnetic soft continuum robots ( Fig. 1 a ) – which were enabled

by the use of hard-magnetic ( e.g., NdFeB) particles that are uniformly dispersed throughout the robot’s body as distributed

actuation sources. These embedded hard-magnetic particles, which are intrinsic dipoles once magnetized, generate magnetic 

torques and/or forces when external magnetic fields are applied for actuation ( Lum et al., 2016 ; Kim et al., 2018 ; Zhao et al.,

2019 ). The generated magnetic torques and forces collectively lead to large scale elastic deflections of the robot’s body,

as the intrinsic dipoles reorient themselves along the applied field direction ( Fig. 1 b ). This unique actuation mechanism

yields better steering capabilities at much smaller scales than conventional continuum robots, thereby enabling navigation

in tight spaces such as the brain’s vasculature ( Fig. 1 c ). Based on these capabilities, the work has demonstrated navigat-

ing in a life-sized silicone replica of the brain’s blood vessels with ferromagnetic soft continuum robots under remotely

applied magnetic fields ( Fig. 1 d ). In addition to the soft continuum robots, hard-magnetic materials have also been uti-

lized for fabricating other types of soft robots such as microswimmers ( Diller et al., 2014 ; Hu et al., 2018 ; Zhang and Diller,

2018 ). 

To analyze this emerging class of magnetically steerable soft continuum robots, a suitable theoretical model to accurately

describe their nonlinear magnetoelastic behavior is warranted. Although a general, continuum-level framework for compu- 

tational analysis of so-called hard-magnetic soft materials was presented by Zhao et al. (2019) , such computational analysis

with finite element simulation is of limited use in practice because of their high computational cost. More importantly, such

numerical approaches in finite element environments are not favorable to solving inverse problems, where calculation of

required magnetic fields to achieve desired configuration of the robot is of greater importance than simply predicting the

robot’s behavior under specified input fields. To facilitate the use of analytical solutions, as well as the insights provided by

them, in the design and control of ferromagnetic soft continuum robots, we formulate a new type of problems – so-called

hard-magnetic elastica – which deals with the large scale deflection of an elastic rod made of a homogenous continuum of

hard-magnetic soft materials. 

Despite the long and checkered history underlying the elastica theory, systematic analyses of hard-magnetic elastica

have remained largely unexplored. This is mainly because previous studies of magnetoactive elastica were mostly focused

on elastic beams or rods composed of soft-magnetic ( e.g., carbonyl iron) materials ( Ciambella et al., 2018 ; Danas et al., 2012 ;

Schmauch et al., 2017 ; Singh and Onck, 2018 ) or paramagnetic materials ( Gerbal et al., 2015 ). As illustrated in Fig. 2 a , param-

agnetic materials do not retain any remanent magnetization, and their magnetization is highly dependent on the externally
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Fig 2. (a) Magnetization curves and hysteresis loops of hard-magnetic (black), soft-magnetic (red), and paramagnetic (green) materials. The curves show 

the magnetization ( M ) as a function of the applied magnetic field strength ( H ). Hard-magnetic materials maintain the remanent magnetization ( M r ) when 

the actuation field strength is much smaller than the coercivity ( H c ). (b) Schematic illustration of the hard-magnetic elastica with programmed remanent 

magnetization resulting from the aligned hard-magnetic particles with intrinsic dioples in the polymer matrix. (c) Scanning electron microscope (SEM) 

image of NdFeB microparticles with an average size of around 5 μm. (d) Micro computerized tomography (μCT) image of NdFeB microparticles uniformly 

distributed in the PDMS matrix (20 vol%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

applied magnetic field. While soft-magnetic materials can possess remanent magnetization, it can be easily reverted by ex-

ternal magnetic fields because of their relatively low coercivity, which is comparable with the applied field for actuation.

On the contrary, hard-magnetic materials, once magnetically saturated, have relatively high coercivity and hence can retain

remanent magnetization (denoted as M r in Fig. 2 a ) as long as the applied actuating magnetic field is sufficiently lower than

the coercivity (denoted as H c in Fig. 2 a) . Within this range of actuating fields far below the coercivity ( Fig. 2 a), it is reason-

able to assume that the remanent magnetization of hard-magnetic materials remains unaffected by the externally applied

magnetic field. 

Typical composition and microstructure of the hard-magnetic elastica are illustrated in Fig. 2 b . Magnetically isotropic

hard-magnetic microparticles ( e.g., NdFeB with average size of 5 μm in Fig. 2 c ) are uniformly dispersed within a soft poly-

mer matrix ( e.g., PDMS in Fig. 2 d ). Upon fabrication into a slender rod through either injection molding or printing ( Kim

et al., 2019 ), the embedded hard-magnetic particles are randomly oriented, yielding no net magnetization along the rod ( i.e.,

no net magnetization state in Fig. 2 b ). When the rod is exposed to a strong magnetic field (~2.7 T), the embedded hard-

magnetic particles are magnetically saturated into one direction, which gives rise to the overall magnetic polarity along

the axial direction ( i.e., saturated magnetization state in Fig. 2 b ). Under an actuating magnetic field (far below the coercive

field), the body deforms as the embedded magnetic dipoles align themselves along the applied field direction ( i.e., actuation

state in Fig. 2 b ). 

Here, we present a theory for hard-magnetic elastica, which allows for accurate prediction of the large deflection in-

duced by magnetic body torques and/or forces in the presence of external magnetic fields. In Section 2 , we first provide

a general, continuum framework for hard-magnetic soft materials including kinematic relations and constitutive equations

obtained from elastic and magnetic potential energies. Then, we apply certain constraints specific to the slender geometry

and planar motion of the elastica to derive the governing equations for hard-magnetic elastica in several forms. From the

governing equation, we obtain explicit analytical solutions for the hard-magnetic elastica under spatially uniform magnetic

fields. In Section 3 , we also present deformed configurations of the hard-magnetic elastica calculated while varying the ori-

entation of the applied magnetic field with respect to the magnetization direction of the elastica. For two specific cases, as

illustrative examples, in which the actuating magnetic field is applied in the direction either perpendicular or antiparallel

to the residual magnetization of the hard-magnetic elastica, we validate our model by comparing the obtained solutions

with both experimental results and finite element simulations presented by Zhao et al. (2019) in Section 4 . Extending the

validated model to specific applications relevant to the ferromagnetic soft continuum robots, in Section 5 , we construct a

plot visualizing the full workspace by the end-effector of the robot in space under a varying magnetic field, which in turn

can be used to control the navigation of the robot. We conclude in Section 6 where we also speculate on the potential use

of the developed framework for hard-magnetic elastica in the design and control of the emerging class of ferromagnetic soft

continuum robots. 
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2. Theory 

2.1. General continuum framework and constitutive relations 

We begin by describing a general, continuum-level framework with kinematic relations for hard-magnetic soft materials,

which we consider as a homogenized continuum that constitutes a deformable, elastic solid with hard-magnetic properties.

The underlying assumption in the analysis of hard-magnetic soft materials is that, once the intrinsic magnetic dipoles are

magnetically saturated, the residual magnetization density can be considered an independent variable, which remains un-

affected by the applied actuating field unless it exceeds the coercivity of the embedded hard-magnetic material. Moreover,

because the permeability of the fully saturated hard-magnetic particles and polymer matrix (relative permeability of 1.04

and 1.00, respectively) used in the current study is approximately the same as that of air, the presence of the hard-magnetic

elastica will not perturb the applied actuation magnetic field ( Pyrhönen et al., 2014 ; Zhou and Wang, 2016 ). Therefore, the

magneto-mechanical coupling in the hard-magnetic elastica arises only from the deformation-induced variation of the re-

manent magnetization ( e.g., rotation of the remanent magnetization vector) in the applied magnetic field. Provided that the

actuating magnetic field is in general far below the coercivity, we can consider a mechanically soft, deformable body with

permanent magnetization density. Any material point in the solid of interest is identified by its initial position vector X in

the reference (undeformed) configuration, while the same material point in the deformed (current) configuration is given

by x = χ(X ) , where the mapping χ describes the deformation of the body. The deformation gradient tensor F is defined as

F = Grad χ, (1) 

where Grad denotes the material gradient with respect to X in the reference configuration. The volumetric Jacobian is de-

fined as J = det F > 0 , which characterizes the change in material volume elements during the deformation. 

The magnetization density is denoted by a vector M in the reference configuration and m in the deformed configuration.

Likewise, the magnetic charge density, a scalar quantity, is denoted by ρM 

and ρm 

in the reference and deformed config-

urations, respectively. The conservation of total magnetic charge requires ρM 

= Jρm 

, which can be written in terms of the

magnetization density in a differential form as 

Div M = J div m , (2) 

where Div denotes the material divergence with respect to X in the reference configuration, while div denotes the spatial

divergence with respect to x in the deformed configuration. It is worth noting that 1) the magnetic charge density is anal-

ogous to the polarization charge density in electrostatics, except that a magnetic monopole has never been observed, and

2) the magnetization density can be spatially nonuniform, which leads to a nonzero magnetic charge density. Combining

the divergence theorem with the Nanson’s formula, which characterizes the area change, we obtain the following kinematic

relation for the divergence of any vector field A : 

Div A = J div ( J −1 FA ) . (3) 

From Eqs. (2) and (3) we obtain the relation between M and m as 

m = J −1 FM . (4) 

Under isothermal conditions, work done by the externally applied magnetic field B is stored as Helmholtz free energy,

which can be expressed per unit current volume as 

ψ 

magnetic = −m · B , (5) 

and per unit reference volume in terms of the referential magnetization density M as 

ψ 

magnetic 
R 

(F ) = J ψ 

magnetic = −FM · B , (6) 

which becomes a function of the deformation gradient F . The elastic part of the Helmholtz free energy – also known as

strain energy – per unit reference volume is also a function of the deformation gradient: ψ 

elastic 
R 

(F ) . For this strain en-

ergy function, several specific forms and constitutive laws to describe the elastic properties of materials are available: neo-

Hookean, Mooney-Rivlin, Ogden, Arruda-Boyce, and so on. The total Helmholtz free energy density is the sum of the elastic

and magnetic components: ψ R (F ) = ψ 

elastic 
R 

(F ) + ψ 

magnetic 
R 

(F ) . 

For isothermal processes, the dissipation inequality reads that the rate of change in the free energy stored in the body is

less than, or at most equal to, the power expended on the body: 

D int = P : ˙ F − ˙ ψ R ≥ 0 . (7) 

Here, D int denotes the internal dissipation, P : ˙ F denotes the rate of internal mechanical work, where P is the first Piola-

Kirchhoff stress tensor (or nominal stress) which forms a work conjugate pair with the time derivative of the deformation

gradient ˙ F , and 

˙ ψ R is the rate of change in the total Helmholtz free energy. For hyperelastic materials, from the inequality

(7) with the chain rule, the Piola stress is obtained from the derivative of the free energy function with respect to F : 

P = 

∂ ψ R 
. (8) 
∂F 
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Then, by definition, the Cauchy (or true) stress tensor is expressed as 

σ = J −1 ∂ψ R 

∂F 
F T , (9)

where F T denotes the transpose of the deformation gradient tensor. From Eqs. (6) and (9) , the magnetic Cauchy stress can

be expressed as 

σmagnetic = −J −1 B � FM = −B � m , (10)

where the operator � denotes the dyadic product that takes two vectors to yield a second-order tensor. The application of

an actuating magnetic field B to the intrinsic magnetic dipoles in the material generates the magnetic Cauchy stress. The

magnetic Cauchy stress drives the deformation of the material, which leads to the elastic Cauchy stress, denoted by σelastic .

The total Cauchy stress is then expressed as: 

σ = σelastic + σmagnetic = J −1 ∂ψ 

elastic 
R ( F ) 

∂F 
F T − J −1 B � FM . (11)

Assuming quasi-static conditions, the following equation of linear momentum balance must be satisfied everywhere in

the deformed body for the material to be in equilibrium: 

div σ + b = 0 , (12)

where b denotes the body force per unit current volume. This equilibrium equation can be solved for the deformation

gradient F to find the equilibrium configuration of the given hard-magnetic soft material under magnetic actuation. This

continuum-level approach based on elastic and magnetic Cauchy stresses is particularly useful in finite element environ-

ments when the given geometry is complicated, as demonstrated in previous studies by Kim et al. (2018) , Zhao et al. (2019) ,

because the constitutive equations can be readily implemented in commercial finite element software packages such as

Abaqus. 

When the magnetic Cauchy stress is employed in the analysis of hard-magnetic soft materials, the magnetic body torque

and force are automatically taken into account via suitable mechanical balance laws. From the angular momentum balance,

for example, the magnetic body torque (per unit current volume) can be expressed in terms of the magnetic Cauchy stress

as 

τmagnetic = −E : 
(
σmagnetic 

)T = m × B = J −1 FM × B , (13)

where E = ε i jk e i � e j � e k is the third-order permutation tensor, and the operator : denotes the double contraction of two

tensors. If the magnetization density is spatially uniform across the material, from the linear momentum balance in Eq. (12) ,

the magnetic body force (per unit current volume) can be expressed in terms of the magnetic Cauchy stress as 

b 

magnetic = −div σmagnetic = div ( B � m ) = ( grad B ) m = J −1 ( grad B ) FM , (14)

where grad denotes the spatial gradient with respect to x in the deformed configuration. From Eq. (14) we know that, when

the applied magnetic field B is spatially uniform, the magnetic body force term vanishes, and therefore the actuation of

hard-magnetic soft materials is driven by the magnetic torque. Equivalently, the magnetic body force (per unit volume) can

also be expressed as the negative gradient of the magnetic potential energy defined in Eq. (5) as 

b 

magnetic = −grad ψ 

magnetic = ( grad B ) 
T 
m = J −1 ( grad B ) 

T 
FM . (15)

Note that, for irrotational (curl-free) magnetic fields with no free current, the spatial gradient is symmetric: grad B =
( grad B ) T , which makes the two expressions in Eqs. (14) and (15) identical. 

It is worth noting that the magnetic body torque generated by the embedded magnetized particles under external mag-

netic fields causes the magnetic Cauchy stress in Eq. (10) to be asymmetric. Correspondingly, in the presence of magnetic

body torques, the total Cauchy stress in Eq. (11) can also be asymmetric. It should also be noted that for conventional

isotropic magnetorheological elastomers with soft-magnetic inclusions, whrere no body torque or couple stress exists, the

Cauchy stress should remain symmetric to satisfy the angular momentum balance, as discussed in a large volume of litera-

ture ( Dorfmann and Ogden, 2003 , 2004 , 2014 ; Holzapfel, 2001 ). 

2.2. Hard-magnetic elastica: kinematic relations and governing equations 

We now focus our attention on a thin, elastic rod with hard-magnetic properties – the hard-magnetic elastica, which pro-

duces large deflections under externally applied magnetic fields owing to the presence of intrinsic dipoles ( Fig. 3 a) . Although

we still confine ourselves to quasi-static problems under isothermal conditions, the transition from the general continuum

framework for hard-magnetic soft materials to the analysis of hard-magnetic elastica requires a set of restrictions specific

to the slender geometry and planar motion of the elastica. While more generalized rod theories ( e.g., Kirchhoff’s, Cosserat’s,

Green and Naghi’s) can analyze the stretching, twisting, and transverse shearing as well as the bending of rods ( Bretl and

McCarthy, 2013 ; Jiang et al., 2016 ; Kratchman et al., 2016 ; Tunay, 2013 ), the twisting motion has low practical implications

for the interest in magnetically steerable soft continuum robots and hence can be ruled out. Plus, for a slender body with
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Fig. 3. (a) Ferromagnetic soft continuum robot deforms under the applied magnetic field B . Magnetization vector M in the reference state (shown by 

dim red arrows) changes to FM in the deformed state (shown by bright red arrows) where F is the deformation gradient. Symbols b magnetic and τmagnetic 

denote the magnetic body force and torque density, respectively. (b) The geometry of the deformed robot is characterized by a parameterized spatial curve 

θ = θ (s ) , referred to as elastica, in which s and θ represents the arc length and tangential angle at the spatial point, respectively. The rotation angle at the 

free-tip is denoted as θ L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a diameter much smaller than its length, we can assume that the cross-section remains perpendicular to the centerline of

the body during deformation ( i.e., no transverse shearing). Furthermore, we can assume that the centerline length of the

elastica remains unchanged during deformation ( i.e., centerline inextensibility along the length direction), which will be

justified later in the discussion section. Lastly, given that most polymeric materials can sustain finite strains without notice-

able volume changes, we will also assume the incompressibility of constituent materials ( i.e., J = 1 ), which, along with the

assumption of inextensibility, implies that the cross-sectional area does not vary during magnetoelastic deflections. 

With these underlying assumptions specific to the slender geometry and planar motion of the hard-magnetic elastica,

the curvature of the centerline ( i.e., a spatial curve in the current configuration) can be expressed as 

κ(s ) = 

dθ (s ) 

ds 
= θ ′ (s ) , (16) 

where s denotes the arc length from the origin to the spatial point of interest (denoted by P in Fig. 3 b ) and θ ( s ) denotes

the angle between the tangent to the curve at point P and the reference direction ( i.e., x -axis in Fig. 3 b ). 

For our bendable yet inextensible, twist-free hard-magnetic elastica, the strain energy density (or the elastic Helmholtz

free energy per unit current volume) includes only the bending energy, but no stretching or torsional energy. The bending

energy then can be expressed as a function of the curvature: ψ 

elastic (θ ′ ) . Commonly, for a slender rod, the bending energy

(per unit volume) takes the following quadratic form proposed by Euler for the inextensible elastica ( O’Reilly, 2017 ): 

ψ 

elastic (θ ′ ) = 

EI 

2 A 

θ ′ 2 , (17) 

where E denotes Young’s modulus, I is the area moment of inertia, and A is the cross-sectional area of the hard-magnetic

elastica. It is worth noting that the constitutive relation for the bending energy in Eq. (17) implies the following moment-

curvature relation, also known as Euler-Bernoulli relation ( de Payrebrune and O’Reilly, 2016 ; Tunay, 2004 ): 

M b ( s ) = EI κ( s ) , (18) 

where M b ( s ) denotes the internal bending moment. This linear relation holds only for beams or rods made of linear elastic

materials for which stress and strain are linearly related by Young’s modulus. Even though the hard-magnetic elastica overall

exhibits large scale deflections, the local maximum strain developed on an infinitesimal segment due to local compression or

stretching during the magnetoelastic bending is inherently limited to a small level. Within this limited range, the constitutive

relations for the constituent hyperelastic materials can be linearized, which yields the linear moment-curvature relation in

Eq. (18) and the quadratic form for the bending energy in Eq. (17) . 

The deformation gradient, which can be decomposed into F = RU where R and U denote the rotation and right stretch

tensors, respectively, now becomes identical to pure rotation ( F = R ) because of the underlying assumption of inextensibility

( U = 1 ; no stretch). Furthermore, because the motion of the elastica is planar ( e.g., on xy -plane in Fig. 3 b ), the rotation R

takes the basic form for the rotation around the z -axis: 

R = R z (θ ) = cos θe x � e x − sin θe x � e y + sin θe y � e x + cos θe y � e y + e z � e z (19) 

Then, from Eq. (6) , The magnetic potential energy per unit current volume can be expressed as 

ψ 

magnetic (θ, s ) = −RM · B , (20) 

which leads to the total Helmholtz free energy density as a function of three variables ( θ , θ ′ , s ): ψ(θ, θ ′ , s ) = ψ 

elastic (θ ′ ) +
ψ 

magnetic (θ, s ) . Then the total Helmholtz free energy of the elastica, denoted by 	, can be expressed as: 

	[ θ (s ) ] = A 

∫ L 

ψ(θ, θ ′ , s ) ds , (21) 

0 
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where L denotes the length of the elastica. The equilibrium state (the deformed configuration) can be found from the princi-

ple of stationary potential energy δ	 = 0 , which yields the following differential equation also known as the Euler-Lagrange

equation: 

d 

ds 

(
∂ψ 

∂θ ′ 

)
= 

∂ψ 

∂θ
, (22)

from which we obtain the following governing equation for the hard-magnetic elastica: 

d 

ds 

(
∂ ψ 

elastic 

∂θ ′ 

)
= 

∂ ψ 

magnetic 

∂θ
. (23)

Substituting the elastic and magnetic potential energy densities in Eqs. (17) and (20) into Eq. (23) , we obtain 

EI 

A 

d 2 θ

d s 2 
= 

∂ 

∂θ
(−RM · B ) , (24)

where the right-hand side can be expanded by applying chain rule into 

∂ 

∂θ
(−RM · B ) = −∂R 

∂θ
M · B − RM ·

(
grad B 

∂x 

∂θ

)
. (25)

Here, again, the magnetization density is assumed to be spatially uniform. Given that the derivative of a rotation tensor

can be expressed in terms of a skew-symmetric tensor and its axial vector (see Appendix A for details), the first term on

the right-hand side of Eq. (25) can be re-written as 

∂R 

∂θ
M · B = e z · ( RM × B ) = [ RM × B ] z , (26)

while the second term can be rearranged as 

RM ·
(

grad B 

∂x 

∂θ

)
= 

(
( grad B ) 

T 
RM 

)
· ∂x 

∂θ
. (27)

Then, the governing equation in Eq. (23) can be expressed as 

EI 

A 

d 2 θ

ds 2 
+ [ RM × B ] z + 

(
( grad B ) 

T 
RM 

)
· ∂x 

∂θ
= 0 , (28)

which can be equivalently expressed in terms of the magnetic body torque and force from Eqs. (13) and (15) as 

EI 

A 

d 2 θ

ds 2 
+ e z · τmagnetic + 

∂x 

∂θ
· b 

magnetic = 0 . (29)

Physically, the first term in Eq. (29) can be interpreted as the variation in strain energy, while the second and third terms

can be interpreted as work done by the magnetic body torque and force, respectively, per unit volume of an infinitesimal

element at point P in the deformed configuration during a small variation in angle θ . Eq. (29) can also be written in terms

of the scalar components as 

EI 

A 

d 2 θ

ds 2 
+ τ magnetic 

z − b magnetic 
x 

∫ s 

0 

sin θ ( η) dη + b magnetic 
y 

∫ s 

0 

cos θ ( η) dη = 0 , (30)

in which the following kinematic relations are employed for a clamped-free elastica: 

x = 

∫ s 

0 

cos θ (η) dη e x + 

∫ s 

0 

sin θ (η) dη e y , (31)

∂x 

∂θ
= −

∫ s 

0 

sin θ (η) dη e x + 

∫ s 

0 

cos θ (η) dη e y , (32)

where η is used as a dummy variable for integration. Note that Eq. (30) obtained above is equivalent to the governing

equation obtained from the force and moment balance ( Lum et al., 2016 ). 

2.3. Analytical solutions for deflections under uniform magnetic fields 

When the actuating magnetic field is spatially uniform, ( i.e., grad B = 0 ), the magnetic body force terms vanish, signif-

icantly simplifying the governing equation. In general, the bending actuation of ferromagnetic soft continuum robots is

driven by the magnetic body torque and further supported by the magnetic body force as the body deforms ( Kim et al.,

2019 ). Therefore, studying the response of the hard-magnetic elastica under uniform magnetic fields is of primary impor-

tance. Consider a hard-magnetic elastica lying on the x -axis with a uniform magnetization density along the body in the

reference configuration, which is represented as M = M e x where M denotes the magnitude. When a uniform magnetic field
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is applied at an angle ϕ with respect to the reference configuration ( i.e., B = B cos ϕ e x + B sin ϕ e y ), as depicted in Fig. 4 , the

governing equation in Eq. (29) reduces to 

EI 

A 

d 2 θ

d s 2 
+ MB sin (ϕ − θ ) = 0 . (33) 

With the help of chain rule, Eq. (32) can be expressed in the following integral form: ∫ 
d 2 θ

d s 2 
dθ

ds 
ds = −

∫ 
MBA 

EI 
sin (ϕ − θ ) dθ, (34) 

which upon integration yields 

1 

2 

(
dθ

ds 

)2 

= −MBA 

EI 
cos (ϕ − θ ) + C. (35) 

The constant of integration C can be determined from the boundary condition that there is no internal bending moment

at the free end, i.e., θ ′ (L ) = 0 from Eqs. (16) and (18) , which leads to 

C = 

MBA 

EI 
cos (ϕ − θL ) , (36) 

where θ L denotes the angular displacement at the free end in the deformed configuration. Then, Eq. (35) , along with Eq. (36) ,

can be rearranged as 

ds = 

√ 

EI 

2 MBA 

dθ√ 

cos (ϕ − θL ) − cos (ϕ − θ ) 
, (37) 

Integration of Eq. (37) leads to the expression for the total length of the elastica: 

L = 

√ 

EI 

2 MBA 

∫ θL 

0 
( cos (ϕ − θL ) − cos (ϕ − θ ) ) 

−1 / 2 
dθ = 

√ 

EI 

2 MBA 

�(ϕ, θL ) , (38) 

where the nondimensional function �( ϕ, θ L ) is defined as 

�(ϕ, θL ) ≡
∫ θL 

0 
( cos (ϕ − θL ) − cos (ϕ − θ ) ) 

−1 / 2 
dθ

= 

2 √ 

cos (ϕ − θL ) − 1 

[
F 

(
ϕ − θL 

2 

, csc 

(
ϕ − θL 

2 

))
− F 

(
ϕ 

2 

, csc 

(
ϕ − θL 

2 

))]
, (39) 

with the function F denoting the incomplete elliptic integral of the first kind defined as 

F (φ, k ) ≡
∫ φ

0 

dθ√ 

1 − k 2 sin 

2 θ
. (40) 

Eq. (38) can then be rewritten as 

MBA L 2 

EI 
= 

1 

2 

�2 (ϕ, θL ) , (41) 

which relates the dimensionless parameter MBAL 2 / EI with the angular displacement at the free end θ L . The physical meaning

of MBAL 2 / EI is the applied magnetic field strength normalized by the material properties M (magnetization) and E (modulus)

and the geometrical factors A (cross-sectional area), L (length), and I (area moment of inertia). 
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Fig. 5. Generalization of the distributed magnetic torque τmagnetic into an equivalent point force f acting on the free end of a hard-magnetic elastica. 

The equivalent point force has a magnitude of f = MBA with a direction of ϕ relative to the reference configuration ( x -axis). The two different loading 

conditions are equivalent, yielding the same deformed configuration of the elastica. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The kinematic relation in Eq. (31) in a differential form can be expressed as 

dx 

ds 
= cos θe x + sin θe y , (42)

which, along with Eq. (37) , can also be expressed componentwise as 

dx = d s cos θ = 

√ 

EI 

2 MBA 

cos θd θ√ 

cos (ϕ − θL ) − cos (ϕ − θ ) 
, 

dy = d s sin θ = 

√ 

EI 

2 MBA 

sin θd θ√ 

cos (ϕ − θL ) − cos (ϕ − θ ) 
. (43)

Then, the Cartesian coordinates of the free end in the currnet configuration can be expressed as 

δx = 

√ 

EI 

2 MBA 

X (ϕ, θL ) and δy = 

√ 

EI 

2 MBA 

Y (ϕ, θL ) , (44)

where the functions X ( ϕ, θ L ) and Y ( ϕ, θ L ) are defined as 

X (ϕ, θL ) = 

∫ θL 

0 

cos θ ( cos (ϕ − θL ) − cos (ϕ − θ ) ) 
−1 / 2 

dθ, 

Y (ϕ, θL ) = 

∫ θL 

0 

sin θ ( cos (ϕ − θL ) − cos (ϕ − θ ) ) 
−1 / 2 

dθ . (45)

When normalized by the total length L , the free-end coordinates in Eq. (44) can be expressed as 

δx 

L 
= 

X ( ϕ, θL ) 

�( ϕ, θL ) 
and 

δy 

L 
= 

Y ( ϕ, θL ) 

�( ϕ, θL ) 
. (46)

2.4. Equivalent point force at the free end 

Consider a case in which a force denoted by a vector f is acting on the free end of the elastica in equilibrium in the

deformed configuration, in the absence of the influence of external magnetic fields ( i.e., no magnetic body torque and force),

as illustrated in Fig. 5 b . The force f is being applied to the free end at an angle ϕ relative to the reference configura-

tion ( i.e., f = f cos ϕ e x + f sin ϕ e y ). Referring to the free body diagram in Fig. 5 b , we can set the following bending moment

balance at the point P ( x, y ) 

[ M b + r × f ] z = −M b ( x, y ) − f cos ϕ ( δy − y ) + f sin ϕ ( δx − x ) = 0 . (47)

Note that the horizontal component f cos ϕ depicted in Fig. 5 b is negative when ϕ > 90 ◦. Then, from the moment-

curvature relation in Eq. (18) , we obtain 

M b ( x, y ) = EI 
dθ

ds 
= − f cos ϕ ( δy − y ) + f sin ϕ ( δx − x ) . (48)

Taking the derivative of Eq. (48) with respect to the arc length s and applying the differential kinematic relations in

Eq. (42) leads to 

EI 
d 2 θ

2 
= f cos ϕ 

dy − f sin ϕ 

dx = f cos ϕ sin θ − f sin ϕ cos θ = − f sin (ϕ − θ ) . (49)

d s ds ds 



10 L. Wang, Y. Kim and C.F. Guo et al. / Journal of the Mechanics and Physics of Solids 142 (2020) 104045 

0 10 20 30 40
0

30

60

90

120

150

180

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1.0
90ο

60ο

120ο

150ο

180ο

a b
= 180º

= 150º

= 120º

= 90º

= 60º

= 30º

L
(d
eg
)

MBAL2 / LABMIE 2 /EI

y
/
L

= 30º

L
x

y B

O

y

L
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Comparing Eq. (49) with the governing equation obtained under the uniform magnetic field in Eq. (33) , we notice that

the force acting on the free end is equivalent to 

f = MBA. (50) 

Here, both the uniform magnetic field B and the equivalent force f at the free end are applied to the elastica at an angle

ϕ relative to the reference configuration. It is also worth noting that the two scenarios share the same boundary conditions:

θ (0) = 0 and θ ′ (L ) = 0 . Treatment of the effect of distributed magnetic body torques developed under a uniform magnetic

field as an equivalent force acting at the free end tip of the hard-magnetic elastica provides ease of calculation in the

buckling analysis for hard-magnetic elastica under an antiparallel magnetic field ( i.e., ϕ = 180 ◦), as shown in Section 3.3 . 

3. Results and validation 

3.1. Deflection under uniform magnetic fields 

We can solve Eq. (41) for the free-end angular displacement θ L , with given material properties ( M and E ) and geometry

( A, L , and I ) under prescribed magnetic field strength ( B ) and direction ( ϕ), which is presented in Fig. 6 a . The free-end angle

θ L increases monotonically as the applied field strength increases and eventually approaches ϕ as the elastica becomes more

aligned with the applied actuating field. From Eqs. (45) and (46) , we also obtain the free-end location (normalized by the

length L ) of the deflected elastica with respect to the fixed end, as plotted in Fig. 6 b against the normalized magnetic field

MBAL 2 / EI applied at different angles ϕ relative to the reference configuration of the elastica. When ϕ ≤ 90 ◦, the normalized

free-end deflection δy / L increases monotonically and then becomes saturated. When ϕ > 90 ◦, however, the normalized

deflection δy / L initially increases and then drops after reaching its peak as the elastica further deflects with the free-end

angle θ L being greater than 90 °. 
To validate the developed theory of hard-magnetic elastica, we compare our model-based prediction with finite element

simulation and experimental results previously reported by Zhao et al. (2019) for two representative cases when i) ϕ =
90 ◦ (under perpendicular magnetic fields) and ii) ϕ = 180 ◦ (under antiparallel magnetic fields). In their simulations and

experiments, rectangular beams made of hard-magnetic soft materials, in which the area moment of inertia was defined

as I = W C 3 / 12 . For hard-magnetic elastica with a rectangular cross-section with width W and height C , Eq. (41) can be

expressed as 

MB 

G 

(
L 

C 

)2 

= 

1 

8 

�2 (ϕ, θL ) , (51) 

where G denotes the shear modulus of the constituent material of the hard-magnetic elastica. We consider the material

incompressible, in which Young’s modulus is expressed as E � 3 G , as typical hyperelastic solids are often assumed to be

incompressible with the shear modulus far greater than the bulk modulus. The hard-magnetic soft materials for the experi-

mental validation ( Zhao et al., 2019 ) were prepared by mixing NdFeB microparticles ( Fig. 2 c , average diameter ~5 μm) with

PDMS (Sylgard 184). The mixture was cured at 120 °C for 1h and then magnetized along the axis direction by a strong im-

pulse magnetic fields (~2.7 T) generated by an impulse magnetizer. The measured shear modulus and magnetization density

values for hard-magnetic soft materials were reported as G = 303 kPa and M = 144 kA/m, respectively. Note that, as implied

by Eq. (51) , the length-to-thickness ratio L / C greatly affects how much the elastica would deflect under the same normalized

field strength. 
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3.2. Under perpendicular magnetic fields ( ϕ = 90 ◦) 

When ϕ = π/ 2 , Eq. (39) can be expressed as 

�(ϕ = π/ 2 , θL ) = 

2 √ 

sin θL − 1 

[ 

F 

( 

π/ 2 − θL 

2 

, 

√ 

2 

1 − sin θL 

) 

− F 

( 

π

4 

, 

√ 

2 

1 − sin θL 

) ] 

, (52)

while Eq. (45) can be expressed as 

X (ϕ = π/ 2 , θL ) = 2 

√ 

sin θL , 

Y (ϕ = π/ 2 , θL ) = 

2 sin θL √ 

sin θL − 1 

[ 

F 

( 

π/ 2 − θL 

2 

, 

√ 

2 

1 − sin θL 

) 

− F 

( 

π

4 

, 

√ 

2 

1 − sin θL 

) ] 

−2 

√ 

sin θL − 1 

[ 

E 

( 

π/ 2 − θL 

2 

, 

√ 

2 

1 − sin θL 

) 

− E 

( 

π

4 

, 

√ 

2 

1 − sin θL 

) ] 

, (53)

with the function E denoting the incomplete elliptic integral of the second kind defined as 

E(φ, k ) ≡
∫ φ

0 

√ 

1 − k 2 sin 

2 θdθ (54)

Then, by solving Eq. (51) for θ L , along with Eq. (52) when ϕ = π/ 2 , we can predict the free-end angular displacement

as a function of the normalized magnetic field MB / G , as plotted in Fig. 7 a . Also, from Eq. (46) , along with Eqs. (52) and

(53) for ϕ = π/ 2 , we can also find the normalized free-end deflection δy / L as plotted against the normalized field MB / G in

Fig. 7 b . Finite element simulation (dashed lines) and experimental (square dots) results reported by Zhao et al. (2019) are

also presented in Fig. 7 a and b , for comparison, for different length-to-thickness ratios: L/C = 10 , 17 . 5 , 20 . 5 , 41 . For both

measures, our model-based prediction is in good agreement with the simulation and experimental results. The slight gap

between our theory and FEM/experiments may be attributed to the assumption of Euler-Bernoulli relation which often

brings discrepancy especially for less slender beams with relatively small length-to-thickness ratios. 

As shown in Fig. 7 , our developed model captures the large deflection of hard-magnetic elastica particularly well for

slender beams with high L / C . The relatively greater deviation for less slender beams ( i.e., when L/C = 10 ) may be attributed

to the fact that our elastica theory is based on the assumption that the geometry of interest is slender enough to ignore

transverse shearing while focusing on the centerline curve only, as described earlier. Nonetheless, there is still some devi-

ation between our model-based prediction and the finite element simulation as shown in Fig. 7 a and b , even for slender

beams. This may be attributed to the fact that our theoretical formulation, for ease of calculation, is based on the quadratic

form of the bending energy in Eq. (17) , and consequently the Euler- Bernoulli relation in Eq. (18) , which assumes a linear

stress profile across the cross-sectional area. 

Another underlying assumption in our theory is the centerline inextensibility discussed in Section 2.2 . Hard-magnetic

soft materials can undergo homogeneous deformation when subjected to a uniform magnetic field applied in parallel with

the magnetization direction. In the case presented by Zhao et al. (2019) , the uniaxial stretch λ can be expressed as 

λ − 1 

λ2 
= 

MB 

G 

. (55)

When the normalized field strength is high enough to make the curves saturated in Fig. 7 a and b , i.e., MB/G = 0 . 02 , the

stretch value is calculated as λ = 1 . 0067 , which means that the beam made of hard-magnetic soft materials elongates by

only 0.67% of the original length. This negligible contribution of homogeneous uniaxial deformation justifies the underlying

assumption of centerline inextensibility we postulated when developing our theory for hard-magnetic elastica. 

When overlaying our results on top of the simulation and experimental results for comparison, overall, we can observe

good agreement with previously reported data, and hence conclude that our model provides a good quantitative prediction

of the behavior of hard-magnetic elastica. In Fig. 7 a and b , the applied magnetic field strength ranges from 0 to 50 mT,

which corresponds to the normalized magnetic field strength MB / G ranging from 0 to 0.019. In Fig. 7 c , the applied field

strength is 25 mT, which corresponds to MB/G = 0 . 0094 . Note that the current theory assumes that the remanent magneti-

zation is independent of the actuation field and that the actuation field is unperturbed by the presence of the hard-magnetic

elastica, which may also contribute to the discrepancy. 

3.3. Under antiparallel magnetic fields ( ϕ = 180 ◦) 

When ϕ = π , Eq. (39) can be expressed as 

�(ϕ = π, θL ) = 

2 √ 

1 − cos θL 

F 

(
θL 

2 

, csc 

(
θL 

2 

))
, (56)
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Fig. 7. Comparison of our analytical predictions from the developed hard-magnetic elastica theory with finite element simulation (FEM) and experimental 

results ( Zhao et al., 2019 ) under a perpendicular magnetic field ( ϕ = 90 ◦). ( a)-(b) The tip rotation angle θ L and normalized tip deflection δy / L plotted 

each as a function of the normalized magnetic flux density MB / G . The inset shows the schematic of the hard-magnetic elastica under consideration. (c) 

Deformed elastica with different length-to-thickness ratios L/C = 10 , 17 . 5 , 20 . 5 , 41 . The black shapes are experimental observations, and the dashed lines 

and red curves represent the centerlines of the deformed beam predicted from FEM simulations and analytical solutions. The applied magnetic field 

strength ranges from 0 to 50 mT, which corresponds to the normalized magnetic field strength MB / G ranging from 0 to 0.0019. 

 

while Eq. (45) can be expressed as 

X (ϕ = π, θL ) = 

2 √ 

1 − cos θL 

[
cos θL F 

(
θL 

2 

, csc 

(
θL 

2 

))
+ (1 − cos θL ) E 

(
θL 

2 

, csc 

(
θL 

2 

))]
, 

Y (ϕ = π, θL ) = 2 

√ 

1 − cos θL . (57) 

When the deflection is small enough that the tip rotation approaches to zero, i.e., θ L → 0, Eq. (56) yields lim 

θL → 0 
�(π, θL ) =

π/ 
√ 

2 , and then Eq. (41) becomes 

MB cr A = 

π2 EI 
2 

= P cr , (58) 

4 L 
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imental results ( Zhao et al., 2019 ) under an antiparallel magnetic field ( ϕ = 180 ◦). (a)-(b) The tip rotation angle θ L and normalized tip deflection δy / L as 

a function of the normalized magnetic field MB / G for a beam with a length-to-thickness ratio L/C = 20 . 5 . The critical buckling load is MB cr / G � 0.00147. 

(c) Deformed profile of the beam with a length-to-thickness ratio L/C = 20 . 5 under different magnetic field strengths B = 5 , 7 , 10 , 15 , 25 , 40 mT. The black 

areas are experimental observations, and the dashed lines and red curves represent the centerlines of the deformed beams predicted from FEM simulations 

and analytical solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where P cr is the critical compressive load beyond which the column (with length L , Young’s modulus E , and area moment

of inertia I ) buckles when applied along the axial direction. We define the applied magnetic field that satisfies Eq. (58) as

the critical field strength B cr . Interestingly, Eq. (58) implies that, when ϕ = π , the equivalent point force f = MBA is applied

in such a way that compresses the column ( i.e., in the direction of the applied magnetic field) and hence can cause buckling

when the applied field strength exceeds the critical field strength ( i.e., B ≥ B cr ). This analysis further corroborates our inter-

pretation of the magnetoelastic bending actuation as the consequence of the equivalent point force at the free end given in

Eq. (50) . 

For a rectangular beam, the critical field strength can be expressed from Eq. (51) as 

MB cr 

G 

= 

π2 C 2 

16 L 2 
. (59)

By solving Eq. (51) for θ L , along with Eq. (56) when ϕ = π , we can predict the free-end angular displacement as a func-

tion of the normalized magnetic field MB / G , as plotted in Fig. 8 a . Also, from Eq. (46) , along with Eqs. (56) and (57) for ϕ = π ,

we can also find the normalized free-end deflection δy / L as plotted against the normalized field MB / G in Fig. 8 b . Finite el-

ement simulation (dashed lines) and experimental (square dots) results reported by Zhao et al. (2019) are also presented

in Fig. 8 a and b , for comparison, for a specific length-to-thickness ratio: L/C = 20 . 5 . For both measures, our model-based

prediction shows good agreement with previously reported data by Zhao et al. (2019) except for the fact that their finite

element simulation did not anticipate the buckling instability predicted by our theoretical model from Eq. (59) above. 

Plugging the material properties ( G = 303 kPa and M = 144 kA/m) and dimension ( L/C = 20 . 5 ) into Eq. (59) , we can cal-

culate the critical field strength to be MB cr / G � 0.00147, which corresponds to 3.9 mT for the given material and geometry.

The inability to capture such buckling instability with finite element simulation may be attributed to the following reasons.

To simulate the magnetoelastic bending of hard-magnetic elastica subjected to an antiparallel magnetic field in finite el-

ement environment, there should be a slight misalignment ( �) between M and B ( i.e., ϕ = π − �), because nothing but

homogeneous compression would happen under perfectly antiparallel field unless the beam has geometric imperfections or

perturbations. In other words, the use of the slightly inclined actuating field to compensate for the absence of geometric

imperfections would likely have prevented Zhao et al., 2019 from observing the buckling instability from their finite element

simulation. 
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Fig. 8 c visually and directly compares the degrees of bending of the beam theoretically predicted (left), simulated (mid-

dle), and experimentally observed (right) at a set of prescribed field strengths. From their close agreement, we conclude

that our developed model is capable of quantitatively and accurately predicting the large magnetoelastic deflection of hard-

magnetic elastica under uniform magnetic fields. It should be noted that, for general elastica problems, the slender rod

may interact with itself under extreme bending. In those scenarios, the self-interaction of the elastica needs to be con-

sidered accordingly. In the current study, we have not observed significant mechanical or magnetic self-interaction of the

hard-magnetic elastica under magnetic actuation and thus have not taken such self-interaction into account, which may be

explored in future studies. 

4. Applications 

4.1. Workspace of ferromagnetic soft continuum robots 

In the context of ferromagnetic soft continuum robots which were discussed earlier in Fig. 1 , it is important to know

the workspace reachable by the robot’s end effector, i.e., the free-end of the elastica. When the length L is fixed, the de-

flection of the continuum robot can be controlled by varying the applied field strength ( B ) and direction ( ϕ), as shown

in Fig. 9 . Let us first take the scenario when ϕ = 180 ◦ as an example. The trajectory of the robot’s end effector ( δx , δy )

is plotted on a dimensionless plane (normalized by L ) as the solid red curve in Fig. 9 a . Three representative magnetic

fields (MB/G ) / (L/D ) 2 = 0 . 53 , 0 . 87 , 6 . 00 , in a normalized form, are selected, which correspond to three tip rotation angles

θL = 60 ◦, 120 ◦, 180 ◦, at which the deformed configurations of the robot are shown by the dashed curves in Fig. 9 a . Appar-

ently, a stronger field induces a higher degree of bending of the robot. 
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In addition, the trajectory of the robot’s end effector varies when the magnetic field changes its direction, as shown by

the solid curves ( ϕ = 60 ◦, 90 ◦, 120 ◦, 150 ◦, 180 ◦) in Fig. 9 b . Integrating all the trajectories corresponding to different directions

of the applied magnetic fields visualizes the workspace sweeped by the robot’s end effector ( Fig. 9 b ). Any point on the

workspace can be reached by the robot’s end effector under an applied magnetic field with specific direction ϕ and field

strength B , from which we can solve an inverse problem, as discussed in the following section. 

4.2. Procedure to reach target locations 

Solving an inverse problem means to find control inputs required for a ferromagnetic soft continuum robot to steer and

place its end-effector to a tartget location, which is denoted by a specific point (δ∗
x , δ

∗
y ) in the space. We first draw a straight

line with a slope of δ∗
y /δ

∗
x from the origin of the workspace diagram in Fig. 10 a . If this line has no intersection with the

workspace ( i . e ., shaded area), the target location cannot be reached by the robot’s end effector. If the line intersects with the

workspace, any point on the intersecting segment of the line can be reached by the robot’s end-effector, provided that an

appropriate set of control variables ( ϕ, B, L ) is chosen. For example, let us consider a target point that can be prescribed by

δ∗
y /δ

∗
x = −1 . A straight line with a slope of −1 can be drawn from the origin of the workspace diagram in Fig. 10 a . The lower

and upper boundaries of the reachable domain are labeled as Q 1 with δ∗
y /δ

∗
x = (−0 . 5 , 0 . 5) and Q 3 with δ∗

y /δ
∗
x = (−0 . 6 , 0 . 6) ,

which are the intersections between the drawn line and the lower and upper envelopes of the workspace, respectively.

Because Q 1 and Q 3 fall on the robot’s trajectories when ϕ = 180 ◦ and ϕ = 150 ◦, the required magentic field directions to

reach Q 1 and Q 3 can be found as ϕ = 180 ◦and ϕ = 150 ◦, respectively. As another example, the actuating magnetic field

should be applied at ϕ = 165 ◦ for the robot’s end-effector to reach a target located at (δ∗
x , δ

∗
y ) = (−0 . 55 , 0 . 55) , which is

marked as Q 2 in Fig. 10a . 

After the required magnetic field direction ϕ is selected, the length of the robot L required to reach the target location

can be calculated from Fig. 10 a . For example, for ϕ = 180 ◦ ( i.e., Q 1 ), we have (δ∗
x , δ

∗
y ) = (−0 . 5 , 0 . 5) from Fig. 10 a . Thereafter,

the corresponding magnetic field strength B to reach the target location can be determined from Fig. 10 b, in which δ∗
y /L
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is plotted as a function of normalized magnetic field strength ( MB / G )/( L / D ) 2 for various ϕ. We know from Fig. 10 b that

input mangetic fields of (MB/G ) (L/D ) 2 = 2 . 96 , 4 . 71 , 12 . 71 are needed to reach the target locations Q 1 , Q 2 , Q 3 , respectively.

Furthermore, it can be seen that a selection of field direction closer to the upper envelope of the workspace ( i . e, Q 3 ) with a

greater deviation from the antiparallel configuration ( i.e., Q 1 ) requires a stronger magnetic field to reach the target. 

4.3. Bending actuation under spatially non-uniform magnetic fields 

For ease of calculation and simplicity, we present analytical solutions and relevant analyses for the hard-magnetic elastica

under spatially uniform magnetic fields. In the presence of a spatial gradient ( e.g., when actuating continuum robots with

a single permanent magnet as demonstrated by Kim et al., 2019 ), the magnetic body force, as well as the magnetic body

torque, contributes to the bending actuation of the ferromagnetic soft continuum robot ( Fig. 3 a ), as predicted from Eq. (14) .

As the equation implies, the magnetic body force varies with the deformation gradient F , or more specifically, with the

robot’s configuration relative to the applied magnetic field. In the reference configuration, in which the external field is being

applied perpendicularly to the magnetization vector ( Fig. 3 a ), the magnetic body force is almost negligible as predicted from

Eq. (14) , and hence the magnetoelastic bending actuation is driven mostly by the magnetic body torque. The magnetic body

force increases, whereas the magnetic body torque decreases, as the robot’s body deforms and its magnetization vector

becomes more aligned with the applied field. In other words, the bending actuation, which is initiated and driven by the

magnetic body torque, is facilitated and further supported or stabilized by the magnetic body force as the robot’s body

deforms ( Kim et al., 2019 ). We can, therefore, conclude that utilizing spatial gradients to exploit magnetic body forces can

be a good strategy to more effectively control the magnetic steering of ferromagnetic soft continuum robots. 

5. Conclusions 

In this paper, we presented a nonlinear theory for hard-magnetic elastica, which enables accurate prediction of the large

magnetoelastic deflections of slender beams with intrinsic magnetic dipoles under the influence of external magnetic fields.

We summarized a continuum-level description for analyzing hard-magnetic soft materials based on elastic and magnetic

Cauchy stresses. Then, by applying constraints specific to the planar motion of a slender beam, we derived the govern-

ing equations, from which we obtained explicit analytical solutions for the hard-magnetic elastica under spatially uniform

magnetic fields. We validated our developed theory for hard-magnetic elastica by comparing the obtained solutions with

previously reported finite element simulation and experimental data. The validated model was employed to analyze the

workspace of ferromagnetic soft continuum robots for their practical applications, which also provided simple but effective

strategies to determine control variables required to reach target locations with the robot’s end effector. Our developed the-

oretical model enables easier and faster quantitative analysis of hard-magnetic elastica than computation-expensive finite 

element simulation, and therefore suggests applications in the design and control of the emerging class of ferromagnetic

soft continuum robots. 
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Appendix A 

The derivative of a rotation tensor can be expressed as the skew-symmetric matrix of the unit axis vector multiplied

with the rotation itself: 

∂ R z (θ ) = S ( e z ) R z (θ ) , (60) 

∂θ
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where the skew-symmetric matrix of a vector u is defined as 

S (u ) = u z ( e y � e x − e x � e y ) + u y ( e x � e z − e z � e x ) + u x ( e z � e y − e y � e z ) . (61)

When operating on a vector v , the skew-symmetric tensor S ( u ) produces the cross product of the two vectors: S (u ) v =
u × v , which transforms the first term on the right-hand side of Eq. (23) into 

∂R 

∂θ
M · B = ( e z × RM ) · B = e z · ( RM × B ) = [ RM × B ] z , (62)

as given in Eq. (26) . 
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