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Skeletal muscles possess the combinational properties of high
fatigue resistance (1,000 J/m2), high strength (1 MPa), low Young’s
modulus (100 kPa), and high water content (70 to 80 wt %), which
have not been achieved in synthetic hydrogels. The muscle-like
properties are highly desirable for hydrogels’ nascent applications
in load-bearing artificial tissues and soft devices. Here, we propose
a strategy of mechanical training to achieve the aligned nanofi-
brillar architectures of skeletal muscles in synthetic hydrogels,
resulting in the combinational muscle-like properties. These prop-
erties are obtained through the training-induced alignment of
nanofibrils, without additional chemical modifications or addi-
tives. In situ confocal microscopy of the hydrogels’ fracturing pro-
cesses reveals that the fatigue resistance results from the crack
pinning by the aligned nanofibrils, which require much higher
energy to fracture than the corresponding amorphous polymer
chains. This strategy is particularly applicable for 3D-printed micro-
structures of hydrogels, in which we can achieve isotropically
fatigue-resistant, strong yet compliant properties.
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Biological load-bearing tissues such as skeletal muscles com-
monly show J-shaped stress−strain behaviors with low

Young’s modulus and high strength on the order of 100 kPa and
1 MPa, respectively (1, 2). Moreover, despite their high water
content of around 75 wt % (3), skeletal muscles can sustain a
high stress of 1 MPa over 1 million cycles per year, with a fatigue
resistance over 1,000 J/m2 (4). The combinational properties of
skeletal muscles (i.e., high fatigue resistance, high strength, su-
perior compliance, and high water content) are highly desirable
for hydrogels’ nascent applications in soft biological devices,
such as load-bearing artificial tissues (5), hydrogel bioelectronics
(6–9), hydrogel optical fibers (10, 11), ingestible hydrogel devices
(12), robust hydrogel coatings on medical devices (13–17), and
hydrogel soft robots (18–20).
Although various molecular and macromolecular engineering

approaches have replicated parts of biological muscles’ charac-
teristics, none of them can synergistically replicate all these at-
tributes in one single material system (SI Appendix, Table S1).
For example, both strain-stiffening hydrogels (21, 22) and bottle
brush polymer networks (1, 23) can mimic the J-shaped stress−
strain behaviors, but their fracture toughness is still much lower
than biological tissues, since no significant mechanical dissipa-
tion has been introduced in these materials for toughness en-
hancement. Although various tough hydrogels (24–26) have been
developed by incorporating various dissipation mechanisms, they
are susceptible to fatigue fracture under repeated mechanical loads,
since the resistance to fatigue crack propagation after prolonged
repeated mechanical loads is the energy required to fracture a single
layer of polymer chains, unaffected by the additional dissipation
(27). Recently, introduction of well-controlled nanocrystalline do-
mains (28) has been shown to substantially increase a hydrogel’s
fatigue threshold (i.e., the minimal fracture energy at which crack
propagation occurs under cyclic loads), but the growth of nano-
crystalline domains consumes interstitial amorphous polymer chains

and therefore increases the Young’s modulus and reduces the water
content of the hydrogel.
Here, we propose a strategy to achieve the combinational

muscle-like properties in synthetic hydrogels via mechanical
training (Fig. 1A). Using freeze-thawed polyvinyl alcohol (PVA)
hydrogel as a model material, we successfully mimic the aligned
nanofibrillar architectures in skeletal muscles (Fig. 1B). The
developed hydrogels by mechanical training can achieve an ex-
tremely high fatigue threshold (1,250 J/m2) and nominal tensile
strength (5.2 MPa), while maintaining a high water content
(84 wt %) and low Young’s modulus (200 kPa), reaching combi-
national muscle-level properties (29) (Fig. 1C). In situ confocal
microscopy of the hydrogels’ fracturing processes reveals that the
fatigue-resistant (or anti–fatigue-fracture, endurant) mechanism
for the hydrogels is the crack pinning by the aligned nanofibrils,
which require much higher energy to fracture than the corre-
sponding amorphous polymer chains. In situ X-ray scattering of
the hydrogels under elongation further reveals that the low
Young’s modulus of the hydrogels is attributed to the stretching
of polymer chains, orientation of nanocrystalline domains, and
sliding of aligned nanofibrils under moderate stretches.

Results
Design of Muscle-Like Hydrogels. Fig. 1A schematically illustrates
our strategy to design synthetic hydrogels with combinational
properties comparable to skeletal muscles. The strategy first
involves growing compliant nanofibrils in PVA hydrogels by
forming two separated phases (30): (i) high concentration of
polymer chains in the form of nanofibrils cross-linked by
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nanocrystalline domains and (ii) low concentration of amorphous
polymer chains. PVA polymer chains possess abundant hydroxyl
side groups, which can readily form intrachain/interchain hydro-
gen bonding. Upon exposure to a low temperature below freezing
(i.e., −20 °C), the water freezes and forms ice crystals that can
expel PVA chains to form regions of high polymer concentrations.
As the PVA chains come into close contact with each other,
nanocrystalline domains nucleate with the formation of hydrogen
bonds (30–32). These interactions (i.e., hydrogen bonding) remain
intact in the subsequent thawing process, leading to a physically
cross-linked network of nanofibrils. The dendritic growth of ice
crystals further leads to a random distribution of these
nanofibrils (33). The process of freezing and thawing is repeated
for five cycles to grow sufficient nanofibrils.
To form the aligned nanofibrillar structures, the pristine freeze-

thawed hydrogels with randomly distributed nanofibrils are exposed
to repeated prestretches in a water bath as mechanical training,
similar to the exercise of skeletal muscles. Under repeated exercise,
skeletal muscles get strengthened by self-growing, accompanied by
the disruption of the nanofibrillar structures in skeletal muscle and
growth of new muscle nanofibrils (34). Similarly, repeated pre-
stretches applied on the hydrogels with randomly distributed nano-
fibrils are accompanied by the disruption of randomly oriented
nanocrystalline domains, followed by gradual alignment of nanofibrils
with newly formed aligned nanocrystalline domains (35). One merit
of our training strategy is that it does not require any extra supply of
building blocks (i.e., monomers) during the mechanical training (36).

Random and Aligned Nanofibrillar Structures. We first use confocal
laser scanning microscopy to visualize the nanofibrils in the
pristine freeze-thawed PVA hydrogel. Fluorochromes are con-
jugated to the PVA macromolecules by immersing the freeze-
thawed hydrogels in a reactive dye solution (37) (SI Appendix, Fig.
S1). With the conjugated fluorochromes, the PVA-rich phases are
visible in green in the form of randomly distributed nanofibrils
(Fig. 2A), while regions with relatively low concentrations of PVA
polymers (i.e., water-rich phase between adjacent nanofibrils) are
dark. As a control, the chemically cross-linked PVA hydrogel shows
green luminance with uniform brightness, indicating the uniform
distribution of PVA amorphous chains (SI Appendix, Fig. S2).

We next show that the freeze-thawed PVA hydrogel can form
aligned nanofibrillar structures by repeated prestretches in a
water bath (Fig. 2A and SI Appendix, Fig. S3A). The confocal
images of the prestretched PVA hydrogel in Fig. 2A and SI Ap-
pendix, Fig. S3 confirm that the randomly distributed nanofibrils
gradually reorient and align toward the direction of the applied
prestretches. It is noted that, once the first cycle of prestretch is
relaxed, the aligned nanofibrils mostly recover their previous
random distribution elastically (SI Appendix, Fig. S4). As the cycle
number increases, plastic deformation accumulates in the hydro-
gel, which gradually elongates along the prestretched direction,
and finally preserves the alignment (SI Appendix, Fig. S5). The
alignment of nanofibrils reaches a steady state after sufficient
cycles of prestretches (i.e., 1,000 cycles of prestretches of 4.6). The
alignment of the nanofibrils in the prestretched PVA hydrogels is
also validated through scanning electron microscopy (SEM) im-
ages (Fig. 2C) and atomic force microscopy (AFM) phase images
(Fig. 2D). Small angle X-ray scanning (SAXS) patterns (Fig. 2B)
further reveal that the nanocrystalline domains in nanofibrils have
been reoriented during the prestretches. In addition, the measured
diameters of the nanofibrils range from ∼100 nm to ∼1 μm (Fig. 2
A and C and SI Appendix, Fig. S6).
Existing approaches to introduce ordered nanocrystalline do-

mains and aligned structures in hydrogels include cold-drawing
(38), prestretching in air (39), and constrained air-drying (40),
which fail to retain their original high water contents, due to the
formation of additional excessive nanocrystalline domains. By
contrast, the prestretched PVA hydrogel obtained from our
strategy can still maintain a high water content of 84 wt % (Fig.
3C), close to the pristine freeze-thawed PVA samples (88 wt %).
The differential scanning calorimetry results further show that
the crystallinity in the swollen state of the prestretched PVA
hydrogel is only 2.8 wt % (SI Appendix, Fig. S8), slightly higher
than the pristine freeze-thawed PVA hydrogel (1.8 wt %) (Fig.
3C). The slightly increased crystallinity could be attributed to the
newly formed nanocrystalline domains during the nanofibrillar
alignments under cyclic prestretches (41). Both high water content
and low crystallinity in our prestretched PVA hydrogel indicate that
our strategy could substantially suppress the undesirable excessive

Random nanofibril Amorphous chain

Hydrogel with 
random nanofibrils

Hydrogel with 
aligned nanofibrils

A

Repeated pre-stretch
λ

N

λp

Water bath 1 Np

Mechanical training 

High concentration 
of amorphous chains

Low concentration 
of amorphous chains

λp

B

Fascicle Muscle
fiber Myofibril

Human skeletal muscle 

Tendon

Mechanically trained hydrogel

Nanocrystalline domain

Aligned nanofibril

Nanofibril

E (kPa)
Young’s modulus

W (wt %)
Water content

S (kPa)
Nominal strength

Γ0 (J/m2)
Fatigue threshold

~100 200

8470-80

~1000 5200

1250~1000

C Skeletal
muscle 

Trained
hydrogel

Fig. 1. Design of muscle-like hydrogels. (A) Schematic illustration of the
microstructure of a PVA hydrogel with randomly oriented nanofibrils before
mechanical training and a PVA hydrogel with aligned nanofibrils after me-
chanical training (i.e., cyclic prestretches). (B) Similar aligned nanofibrillar
architectures of human skeletal muscles and mechanically trained hydrogels.
(C) Comparison of combinational properties of human skeletal muscle and
mechanically trained hydrogel.
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Fig. 2. Microstructures of PVA hydrogels before and after mechanical train-
ing. (A) Confocal images and corresponding histograms of a hydrogel with
randomly oriented nanofibrils before training (i.e., freeze-thawed PVA) and a
hydrogel with aligned nanofibrils after training (i.e., prestretched PVA). P in
the histograms represents the probability of nanofibrils at each aligned direction
θ. (Scale bar: 50 μm.) (B) SAXS patterns and corresponding scattering intensity I
vs. azimuthal angle θ curve of a hydrogel with randomly oriented nanofibrils
before training (i.e., freeze-thawed PVA) and hydrogel with aligned nanofibrils
after training (i.e., prestretched PVA); a.u., arbitrary units. (C) SEM images of a
hydrogel with randomly oriented nanofibrils before training (i.e., freeze-thawed
PVA) and a hydrogel with aligned nanofibrils after training (i.e., prestretched
PVA). [Scale bars: 20 μm (Left), 10 μm (Right).] (D) AFM phase images of a
hydrogel with randomly oriented nanofibrils before training (i.e., freeze-thawed
PVA) and a hydrogel with aligned nanofibrils after training (i.e., prestretched
PVA). (Scale bar: 100 nm.)
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crystallization while maintaining water content and compliance of
the hydrogels.

Combinational Muscle-Like Properties. We further demonstrate the
combinational muscle-like mechanical properties in the pre-
stretched PVA hydrogel (Fig. 3). At small stretches, the pre-
stretched PVA hydrogel demonstrates a low Young’s modulus
along directions both parallel (210 kPa) and perpendicular
(140 kPa) to the aligned nanofibrils, similar to the pristine freeze-
thawed PVA hydrogel (100 kPa) (Fig. 3 A and D). At high
stretches, the prestretched PVA hydrogel stiffens drastically
parallel to the aligned nanofibrils, exhibiting a J-shaped stress
versus stretch curve, similar to that of skeletal muscles (1). In
addition, the prestretched PVA hydrogel shows an extremely high
ultimate nominal tensile strength of 5.2 MPa parallel to the

aligned nanofibrils, which is 4.3 times the pristine freeze-thawed
hydrogel’s strength (1.2 MPa) and 26 times the chemically cross-
linked hydrogel’s strength (0.2 MPa) (Fig. 3 A and D). The ul-
timate nominal tensile strength of the prestretched PVA
hydrogel perpendicular to nanofibrils is measured to be 1.1 MPa,
close to the value of the pristine freeze-thawed hydrogel (i.e., 1.2
MPa). The prestretched PVA hydrogel also shows high resilience
with negligible hysteresis when stretched along the aligned
nanofibrils (SI Appendix, Fig. S9). The fatigue threshold of the
prestretched PVA hydrogel measured along the aligned nano-
fibrils reaches a record-high value of 1,250 J/m2 (Fig. 3B), orders
of magnitude higher than those of existing tough hydrogels (∼10 J/m2

to ∼100 J/m2) (42–44). To validate the high fatigue threshold of
the prestretched PVA hydrogels parallel to the aligned
nanofibrils, we also apply cyclic loads on a single-notch tensile
specimen with an energy release rate of 1,250 J/m2 and observe
no crack extension over 30,000 cycles (SI Appendix, Fig. S10). Note
that the resolution of measured dc/dN to determine this fatigue
threshold is on the same order as the resolution in previous mea-
surements of rubbers’ fatigue thresholds (27). By contrast, the fa-
tigue threshold perpendicular to the aligned nanofibrils is 233 J/m2,
which is on the same order as that of the pristine freeze-thawed
PVA hydrogel (i.e., 310 J/m2; SI Appendix, Fig. S11), but still much
larger than that of the chemically cross-linked PVA hydrogel (i.e.,
10 J/m2; SI Appendix, Fig. S11).
To compare our results with existing hydrogels and biological

tissues, we summarize the nominal tensile strengths, Young’s
moduli, fatigue thresholds, and water contents of various tough
hydrogels (24, 25, 28, 40, 45–49) and biological tissues (1) in Fig.
3 E and F. The strength−modulus ratios S/E of existing tough
hydrogels such as PAAm-alginate (24), PVA-PAAm (48), dry
annealed PVA (28), freeze-thawed PVA (50), polyampholyte
hydrogels (47), fiber-reinforced hydrogel composites (45, 51),
wood hydrogels (46), and constrained air-drying hydrogels (40)
are in the range of 0.1 to 10 (Fig. 3E). Remarkably, the strength−
modulus ratio S/Eof the prestretched PVA hydrogel is as high as
50, since the high strength of the prestretched PVA hydrogel is
accompanied by its low Young’s modulus.
In addition to the challenge of designing synthetic hydrogels with

superior compliance and high strength, the combinational proper-
ties of high fatigue threshold and high water content have not been
achieved in existing hydrogels (Fig. 3F). By following our strategy,
the fatigue threshold of the prestretched PVA hydrogel can achieve
a high value of 1,250 J/m2 along with a high water content of 84 wt%,
outperforming existing hydrogels and biological tissues.

Mechanisms for Superior Compliance. In situ SAXS measurements
offer insights into the mechanisms for the superior compliance of
the prestretched PVA hydrogel at small deformations (Fig. 4A).
The nanocrystalline morphology in the prestretched PVA hydrogel
(in the swollen state) is investigated by SAXS analysis at the applied
stretch of 1, 1.4, 1.8, and 2.2. As shown in Fig. 4 B andD, the average
distance between neighboring nanocrystalline domains parallel to
aligned nanofibrils Lk (i.e., θ = 0°) for the prestretched PVA
hydrogel at undeformed state (i.e., λ = 1) is estimated to be 13.2 nm.
As the applied stretch increases to 2.2, the average distance between
neighboring nanocrystalline domains increases to 15.5 nm (Fig. 4D),
which indicates the stretching of interstitial amorphous chains be-
tween the adjacent nanocrystalline domains in the nanofibrils. Since
the stretch ratio of interstitial amorphous chains (e.g., 15.5 nm/13.2 nm)
is much lower than the corresponding applied stretch (e.g., 2.2),
sliding between nanofibrils may also occur during stretching. In
comparison, the scattering curves show negligible difference at dif-
ferent stretches perpendicular to the aligned nanofibrils L⊥ (i.e., θ =
90°) (Fig. 4C), which implies the average distance between neigh-
boring nanocrystalline domains perpendicular to the aligned nano-
fibrils L⊥ (i.e., θ = 90°) remains constant with negligible lateral
contraction as the stretch increases.
We further plot the scattering intensity I versus direction θ to

quantify the degree of orientation of nanocrystalline domains dur-
ing stretching (Fig. 4E). At the undeformed state (i.e., λ = 1),
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stretched PVA). Data in C and D are means ± SD, n = 3.
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there are peaks along the prestretched direction (i.e., θ = 0°),
implying that the orientation of nanocrystalline domains along
the prestretched direction exists in the undeformed sample. As
the applied stretch increases, the peaks along the prestretched
direction (i.e., θ = 0°) become more pronounced, indicating
that the applied stretch can drive additional orientation of
nanocrystalline domains. Overall, the stretching of interstitial
amorphous chains, orientation of nanocrystalline domains, and
sliding between nanofibrils account for the superior compliance
of the prestretched PVA hydrogel at moderate deformations
along the aligned nanofibrils.
Furthermore, the high compliance of the pristine freeze-

thawed PVA hydrogel and the prestretched PVA hydrogel
stretched perpendicularly to the aligned nanofibrils can be at-
tributed to the orientation of randomly distributed nanofibrils
and the stretching of amorphous polymer chains between adjacent
nanofibrils, respectively.

Mechanisms for High Fatigue Threshold. In situ confocal laser
scanning microscopy further explains the mechanisms for the
high fatigue threshold of the prestretched PVA hydrogel. As

shown in Fig. 5 A and B, the aligned nanofibrils are perpendicular
to the crack path and pin the crack due to the high strength of the
nanofibrils. There is no observable crack propagation at the applied
stretch of 2.4. As the applied stretch further increases to 2.6, the
nanofibrils at the crack tip are pulled out from the hydrogel but
still bridge the crack tip. As the crack propagates, the rupture of
the nanofibrils requires a much higher energy per unit area than
fracturing the corresponding amorphous polymer chains, giving
rise to a much higher fatigue threshold (1,250 J/m2) than that of
the amorphous polymer networks (10 J/m2). Notably, the crack
pinned by the aligned nanofibrils does not branch or tilt under high
static and cyclic loads (e.g., Fig. 5B and SI Appendix, Fig. S10),
assuring the hydrogel’s high fatigue threshold. By contrast, crack
branching and tilting has been observed in hydrogels reinforced by
microscale phase separation (52) and in elastomers reinforced by
macroscale fibers (53). It will be interesting to study the effects of
the reinforcements across different length scales in future.
When the crack is parallel to the aligned nanofibrils, the crack

begins to propagate in between neighboring nanofibrils at the
applied stretch of 1.5, fracturing interstitial amorphous chains
between the adjacent nanofibrils (Fig. 5 C and D). Similarly, in
pristine freeze-thawed PVA hydrogel, the initially randomly
oriented nanofibrils gradually align parallel to the crack contour
with the increase of the applied stretch, followed by fracturing
interstitial amorphous chains (Fig. 5 E and F). In addition, due
to the very long amorphous chains between the adjacent nano-
fibrils (27), the fatigue thresholds of the pristine freeze-thawed
PVA hydrogel and the prestretched PVA hydrogel with a crack
along the aligned nanofibrils are still moderately high (310 J/m2

and 233 J/m2, respectively; SI Appendix, Fig. S11).

Three-Dimensional Printing of Isotropically Fatigue-Resistant, Strong
yet Compliant Micromeshes. The aligned nanofibrils give notably
anisotropic mechanical behaviors of the prestretched PVA
hydrogel, similar to that of skeletal muscles. However, for many
applications, it is desirable to achieve isotropically muscle-level
properties. Here, we propose to three-dimensionally print micro-
structures of hydrogels and mechanically train the structures to
achieve fatigue-resistant, strong yet compliant properties in both
in-plane directions. To demonstrate such potential, we develop
PVA ink and print microstructures with square meshes as shown
in SI Appendix, Fig. S12A. The confocal image of the 3D-printed
PVA filaments with a diameter of 750 μm shows random distribu-
tions of nanofibrils before mechanical training (Fig. 6A and SI Ap-
pendix, Fig. S12B). During mechanical training, the printed
microstructure undergoes biaxial cyclic prestretches in a water bath
(i.e., prestretch of 3.5 over 1,000 cycles). The trained PVA filaments
with a reduced diameter of 500 μm (SI Appendix, Fig. S12B) show
pronounced alignments of nanofibrils along the filaments from the
confocal images and the SAXS patterns (Fig. 6B). We further
measure the effective nominal stress (i.e., the force divided by the
cross-sectional area of the microstructure) versus stretch of the PVA
mesh before and after training. The effective Young’s moduli of the
prestretched mesh along both in-plane directions are measured to
be 70 kPa, which is slightly higher than that of the pristine mesh (Fig.
6D). The effective nominal strength of the prestretched mesh along
both in-plane directions is measured to be 500 kPa, which is 1.5
times higher than that of the pristine mesh (Fig. 6E). We further
apply cyclic loads on both meshes before and after training with a
notch (Fig. 6C), evaluating their effective fatigue thresholds (i.e., the
minimal energy release rate at which crack propagation occurs in
the mesh under cyclic loads). The effective fatigue threshold of the
prestretched mesh after training reaches 1,000 J/m2 in both in-plane
directions, 2 times higher than that of the pristine mesh (Fig. 6F).

Conclusions
The classical Lake−Thomas theory predicts that the fatigue threshold
of a polymer network is the energy required to fracture a single layer
of amorphous polymer chains, on the order of 1 J/m2 to 100 J/m2 (27,
54). We have proposed that the design principle for fatigue-resistant
(or anti–fatigue-fracture, endurant) hydrogels is to make the fatigue
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Fig. 4. Mechanisms for high compliance of prestretched PVA hydrogel with
aligned nanofibrils. (A) Nominal stress versus stretch curve of prestretched
PVA hydrogel with aligned nanofibrils and corresponding SAXS pattern at
the stretch of 1, 1.4, 1.8, and 2.2. (B) The corrected scattering intensity Iq2

versus vectorqparallel to nanofibrils (i.e., θ = 0°) of prestretched PVA hydrogel
at the stretch of 1, 1.4, 1.8, and 2.2. (C) The corrected scattering intensity Iq2

versus vector qperpendicular to nanofibrils (i.e., θ = 90°) of prestretched PVA
hydrogel at the stretch of 1, 1.4, 1.8, and 2.2. (D) Calculated average distance
between adjacent nanocrystalline domains of prestretched PVA hydrogel
parallel to nanofibrils L// (i.e., θ = 0°) and perpendicular to nanofibrils L⊥ (i.e.,
θ = 90°) at the stretch of 1, 1.4, 1.8, and 2.2. The Inset schematic of nanofibrils
illustrates the average distance between adjacent nanocrystalline domains
parallel to nanofibrils L //and perpendicuar to nanofibrils L⊥. (E) The measured
scattering intensity I vs. Azimuthal angle θ curves of prestretched PVA
hydrogel at the stretch of 1, 1.4, 1.8, and 2.2. Data in D are means ± SD, n = 3.
The dashed red lines in Inset scattering pattern in B and C indicate the di-
rection parallel to nanofibrils and perpendicular to nanofibrils, respectively.
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crack encounter and fracture objects requiring energies per unit area
much higher than that for fracturing a single layer of amorphous
polymer chains (28). We have shown that high densities of nano-
crystalline domains in hydrogels can act as the high-energy phase to
effectively pin fatigue cracks and greatly enhance the fatigue
threshold of nanocrystalline hydrogel up to 1,000 J/m2, exceeding the
Lake−Thomas limit (28). However, the nanocrystalline domains also
significantly increase the Young’s modulus of the hydrogel, due to
nanocrystalline domains’ high rigidity over 1 GPa (28).
While a much higher energy is also required to fracture

nanofibrils than the corresponding amorphous polymer chains,
the rigidity of nanofibrils under moderate stretches can be
designed to be relatively low (55). In this paper, we further

establish that aligning these nanofibrils in hydrogels by me-
chanical training can empower the integration of muscle-like
performances, i.e., high fatigue threshold (1,250 J/m2), high
strength (5.2 MPa), low Young’s modulus (200 kPa), and high
water content (84 wt %), into one single hydrogel material.
In addition, we achieve isotropically enhanced properties by three-
dimensionally printing the hydrogel into microstructures followed
by mechanical training. The capability of making strong,
fatigue-resistant yet soft hydrogels can enable various bio-
medical applications that interact with the human body for
long-lasting performances. This work also opens an avenue to
mechanically engineer alignments of nanofibrils and orienta-
tions of nanocrystalline domains in hydrogels.

E F

BA

C D

Fig. 5. Mechanisms for high fatigue threshold of
prestretched PVA hydrogel with aligned nanofibrils.
Schematic illustration of nanofibril morphology in
(A) notched prestretched PVA hydrogel where crack is
perpendicular to the longitudinal direction of nano-
fibrils, (C) notched prestretched PVA hydrogel where
crack is parallel to the longitudinal direction of
nanofibrils, and (E) freeze-thawed PVA hydrogel.
Corresponding confocal images of notched samples
under different stretches for (B) prestretched PVA
hydrogel where crack is perpendicular to the longitu-
dinal direction of nanofibrils, (D) prestretched PVA
hydrogel where crack is parallel to the longitudinal
direction of nanofibrils, and (F) freeze-thawed PVA
hydrogel. The yellow arrows in confocal images in-
dicate the direction of aligned nanofibrils around
crack tip. (Scale bars: B, 250 μm; D, 100 μm; F, 250 μm.)
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Fig. 6. Isotropically fatigue-resistant, strong yet compliant microstructures of PVA hydrogels by 3D printing and mechanical training. (A) Morphology charac-
terization of 3D-printed freeze-thawed PVA mesh before mechanical training: i and ii are confocal images and histograms for filaments along both in-plane
directions; iii and iv are SAXS patterns in filaments along both in-plane directions. (Scale bar, 250 μm.) (B) Morphology characterization of 3D-printed freeze-
thawed PVA mesh after mechanical training: i and ii are confocal images and histograms for filaments along both in-plane directions; iii and iv are SAXS patterns
in filaments along both in-plane directions. (Scale bar, 250 μm.) (C) Images of mechanically trained mesh with a precrack at the stretch of 1.0 and 1.8 under the
first cycle and the 5,000th cycle of loads. (Scale bar: 1 cm.) (D) Effective Young’s moduli, (E) effective nominal tensile strengths, and (F) effective fatigue thresholds
of PVA mesh before and after mechanical training. P in the histograms in A and B represents the probability of nanofibrils at each aligned direction θ.
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Methods
All details associated with sample preparations, in situ confocal imaging, in
situ X-ray scattering, SEM imaging, AFM phase imaging, mechanical char-
acterization, measurement ofwater content and crystallinity, and 3D printing
of PVA meshes appear in SI Appendix.

Material Preparation. The freeze-thawed PVA was fabricated by freezing
10 wt % of PVA solution at −20 °C for 8 h and thawing at 25 °C for 3 h with
five repeated cycles. The mechanically trained PVA hydrogel was fabricated
by cyclically prestretching the freeze-thawed hydrogel in a water bath using
a mechanical stretcher (Cellscale).

Confocal Imaging of PVA Hydrogels. To visualize the microstructures of the
PVA hydrogels, a fluorescent dye {i.e., 5-[(4,6-dichlorotriazin-2-yl)amino]
fluorescein hydrochloride [5-DTAF]} was used to label the PVA side groups.
Specifically, PVA hydrogel samples were first immersed in a large volume of
sodium bicarbonate solution (0.1 M, pH 9.0) for 12 h to equilibrate the pH
within the samples. Then 5 mg of 5-DTAF dissolved in 1.0 mL of anhydrous
dimethyl sulfoxide was further immersed into 100 mL of sodium bicarbonate
solution (0.1 M, pH 9.0) to form a reactive dye solution. The pH-equilibrated
PVA samples were immersed in the dye solution for 12 h at 4 °C in a dark
environment to form conjugated fluorochromes. Finally, the hydrogel

samples were rinsed several times with deionized water to wash away the
nonconjugated dyes, before fluorescence imaging.

Mechanical Characterization.All of themechanical tests were performed using
a U-stretch testing device (Cellscale) at a deformation rate of 0.3/s. Young’s
modulus, strength, and fatigue threshold were measured in a water bath to
prevent dehydration, following the method established in ref. 28.

Three-Dimensional Printing of PVA Hydrogels. The prepared PVA inks were
stored in 5-mL syringe barrels, which fit nozzles with diameters of 400 μm
(Nordson EFD). To achieve stable and optimal printing, we chose 50 kPa of
air pressure (Ultimus V; Nordson EFD) as the printing pressure, and 15 wt %
PVA (146 kDa, 99% hydrolysis ratio) as the ink. After deposition, the printed
samples were treated by five cycles of freezing (−20 °C for 8 h) and thawing
(20 °C for 3 h) to achieve the final PVA hydrogel meshes.
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Materials and Methods 

Materials. All PVA hydrogels (i.e., chemically cross-linked, freeze-thawed, and prestretched 

PVA hydrogels) were synthesized from a 10 wt% poly(vinyl alcohol) (PVA; Mw 146,000-186,000, 

99+% hydrolyzed; Sigma-Aldrich, 363065) solution. The solution was heated in a water bath at 

100 °C with stirring for 5 hours. To synthesize the chemically cross-linked PVA hydrogel, we 

added 10 µL glutaraldehyde (25 vol%, Sigma-Aldrich, G6257) as a cross-linker to a 1 mL 10 wt% 

PVA solution, and added 10 µL hydrochloric acid (36.5-38 wt%, J.T. Baker, 9535-02) as an 

accelerator into the other 1 mL of 10 wt% PVA solution. We then mixed and defoamed each 

solution by using a centrifugal mixer (AR-100; Thinky). The final mixtures obtained by mixing 

then defoaming the two solutions were then casted into a mold and allowed to cure for 2 hours. 

The chemically cross-linked PVA hydrogel was immersed in deionized water for two days to 

remove unreacted chemicals. To fabricate the freeze-thawed PVA hydrogel, 10 wt% PVA 

solutions after mixing and defoaming were poured into a mold, frozen at -20 °C for 8 hours then 

thawed at 25 °C for 3 hours. The freeze-thawing process was repeated five times. To fabricate the 

prestreched PVA hydrogel, we cyclically prestretched the freeze-thawed hydrogel in a water bath 

using a mechanical stretcher (Cellscale, Canada). The sufficiently aligned nanofibrils were 

achieved by applying the maximum applied stretch of 4.6 for 1000 cycles. 

Confocal imaging of PVA hydrogels in wet state. To visualize the microstructures of the PVA 

hydrogels, a fluorescent dye, 5-([4,6-dichlorotriazin-2-yl]amino)fluorescein hydrochloride (5-

DTAF), was used to label the PVA side groups (Fig. S1). Specifically, PVA hydrogel samples 

were first immersed in a large volume of sodium bicarbonate solution (0.1 M, pH 9.0) for 12 hours 

to equilibrate the pH within the samples. 5 mg of 5-DTAF dissolved in 1.0 mL of anhydrous 

dimethyl sulfoxide (DMSO)  was further added into 100 mL of the sodium bicarbonate solution 
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(0.1 M, pH 9.0) to form a reactive dye solution. The pH-equilibrated PVA samples were immersed 

in the dye solution for 12 hours at 4 °C in a dark environment to form conjugated fluorochromes. 

Finally, the hydrogel samples were rinsed several times with deionized water to wash away the 

non-conjugated dyes, prior to fluorescence imaging. The hydrogel microstructures were imaged 

using a confocal microscope (Leica TCS SP8). Laser intensity, filter sensitivity, and grayscale 

threshold were adjusted in each application to optimize the contrast of the images. In situ 

fluorescent imaging of the PVA hydrogel samples during uniaxial stretching was conducted using 

a linear stretcher (Micro Vice Holder, STJ-0116). 

X-ray scattering. We investigated nanocrystalline morphologies in nanofibrils of freeze-thawed 

PVA hydrogels before and after the prestretches through small angle X-ray scattering (SAXS). 

The X-ray scattering measurements were performed with a Pilatus3R 300K detector (Bruker 

Nanostar SAXS in X-ray diffraction shared experimental facility). The measured scattering 

intensity I of PVA hydrogels in the swollen state was corrected by subtracting the water 

background. A customized linear stretcher was designed to hold the samples at the various 

stretches for in situ X-ray scattering measurements. 

SEM imaging. The SEM images were acquired with supercritically-dried samples by a scanning 

electron microscope (JEOL 5910). We followed the reported experimental protocol to probe the 

nanoscale structures of the prestretched PVA (1). A notched sample was gradually elongated to a 

stretch of 2 without obvious crack propagation in order to delaminate the fibrils near the notch. 

The PVA sample was immediately immersed in a 2.5 wt% glutaraldehyde solution for 3 hours to 

fix the structure, and dehydrated through a series of alcohol solutions in ascending 

concentration  (30, 50, 70, 90, 95, and 100 vol% twice) in order to avoid non-uniform shrinkage. 

The dehydrated PVA sample was fractured along the notch using forceps immediately after being 
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frozen in liquid nitrogen. The fractured samples were kept in ethanol and dried in a supercritical 

dryer (Automegasamdri Series C, Tousimis). The dried fracture surfaces were then sputter coated 

with gold and observed by SEM (JEOL 5910). 

AFM phase imaging. AFM phase images were acquired with an atomic force microscope (MFP-

3D, Asylum Research) in tapping mode. Dry freestanding PVA films were directly attached onto 

the sample stage with double-sided carbon tape. The probe lightly tapped on the sample surface 

with a recorded phase shift angle of the probe motion relative to a driving oscillator. The bright 

regions with high phase angles correspond to regions with a relatively high modulus, and the dark 

regions with low phase angles correspond to regions with a relatively low modulus. 

Mechanical characterization. All the mechanical tests were performed in a water bath at 25°C 

with a U-stretch testing device (CellScale, Canada). For mechanically weak samples (e.g., the 

chemically cross-linked hydrogel), a load cell with a maximum force of 4.4 N was used; for 

mechanically strong samples (e.g., the freeze-thawed and prestretched PVA hydrogels), a load cell 

with a maximum force of 44 N was used. The nominal stress S was measured from the recorded 

force F divided by width W and thickness t in the swollen state. The stretch was calculated by the 

applied displacement divided by gauge length of the sample at undeformed state. The Young’s 

modulus was calculated from the initial slope of the nominal stress versus stretch curve. The 

ultimate tensile strength was identified at the maximum nominal stress when the sample ruptures. 

To measure the fatigue threshold of PVA hydrogels, we adopted the single-notch method, 

which is widely used in fatigue tests of rubbers. All fatigue tests in this study were performed on 

fully swollen hydrogels immersed in a water bath to prevent the dehydration-induced crack 

propagation. Cyclic tensile tests were conducted on notched and unnotched samples with identical 

dogbone shapes. The initial crack length in notched sample was smaller than one-fifth of the width 
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of the sample. The curves of nominal stress S versus stretch λ of the unnotched samples were 

obtained over Nth cycles with the maximum applied stretch of λmax. The strain energy density of 

the unnotched sample under the Nth cycle with the maximum applied stretch of λmax can be 

calculated as � � max

max 1
,W N Sd

O
O O ³ . Thereafter, the same maximum applied stretch λmax was 

applied on the notched sample, and we recorded the crack length at the undeformed state c over 

cycles using a digital microscope (AM4815ZT, Dino-Lite; resolution, 20 mm/pixel). The applied 

energy release rate G in the notched sample under the Nth cycle with the maximum applied stretch 

of λmax can be calculated as � � � � � � � �max max max, 2 ,G N k c N W NO O O � � , where k is a slowly 

varying function of the applied stretch as max3 /k O . By varying the applied stretch of λmax, we 

acquired the curve of crack extension per cycle dc/dN versus the applied energy release rate G. 

The fatigue threshold can be obtained by linearly extrapolating the curve of dc/dN vs. G to the 

intercept with the abscissa. Considering the resolution of the camera is around 0.02 mm (20 

µm/pixel for the camera), the detectable resolution of dc/dN is 0.002 µm/cycle for our setup, which 

is on the same order as the resolution in previous fatigue tests for fatigue thresholds of rubbers 

(i.e., 0.001 µm/cycle) (2). Unlike bulk PVA samples, there was no detectable fatigue-crack 

propagation in 3D-printed micro-meshes with a notch (that is, if the crack does not propagate 

during the 1st cycle in the 3D-printed micro-meshes, it will not propagate over subsequent cycles 

unless a higher stretch is applied), possibly because the filaments were trained and became stronger 

during cyclic fatigue measurements. This observation was consistent with the recent work on the 

design of stretchable materials with high toughness and high resilience (3). 

Measurement of water content. We measured the water content in swollen PVA hydrogels using 

thermal gravimetric analysis (furnace: TGA1-0075, control unit: DCC1-00177). We first cut a disk 
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shape of swollen PVA hydrogels of 3-7 mg. The swollen hydrogels weighing swollenm  in a titanium 

pan without any water droplet on the surface of the samples. The samples were thereafter heated 

up from 30 °C to 150 °C at the rate of 20 °C/min, and then 150 °C to 160 °C at the rate of 5 °C/min 

under a nitrogen atmosphere at a flow rate of 30 mL/min. The measured mass of the sample was 

recorded. In Fig. S7, a typical TGA curve of pristine freeze-thawed PVA hydrogels is plotted. The 

mass of the sample decreases with the increase of temperature and gradually reaches a plateau 

drym  when the all residual water in the sample evaporates. The water contents of the swollen PVA 

hydrogels waterI  were identified using 1 /dry swollenm m� . 

Measurement of crystallinities. We measured the crystallinities of the resultant PVA hydrogels 

using differential scanning calorimetry (DSC/cell: RCS1-3277, cooling system: DSC1-0107), 

following the experimental protocols in the paper (4). Before air-drying the PVA hydrogels for 

DSC measurements, we first used excess chemical cross-links to fix the amorphous polymer chains 

to minimize the further formation of crystalline domains during the air-drying process. Specifically, 

we soaked the samples (thickness of 1 mm) in the aqueous solution consisting of 10 mL of 

glutaraldehyde (25 vol%;), 500 μL of hydrochloric acid (36.5 to 38 wt%), and 100 mL of DI water 

for 1 hour. Thereafter, we soaked the samples in a deionized water bath for 1 hour to remove the 

extra glutaraldehyde and hydrochloric acid. The samples were further dried in an incubator (New 

Brunswick Scientific, C25) at 37 °C for 1 hour. 

In a typical DSC measurement, we first weighed the total mass of the air-dried sample m 

(still with residual water). The sample was thereafter placed in a Tzero pan and heated up from 

50 °C to 250 °C at the rate of 20 °C/min under a nitrogen atmosphere with flow rate of 30 mL/min. 

The curve of heat flow shows a broad peak from 60 °C to 180 °C, indicating that the air-dried 

sample contained a small amount of residual water. The integration of the endothermic transition 
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ranging from 60 °C to 180 °C gives the enthalpy for evaporation of the residual water per unit 

mass of the dry sample (with residual water) Hresidual. Therefore, the mass of the residual water 

mresidual can be calculated as 0/residual residual waterm m H H � , where 0 2260 J/gwaterH   is the latent heat 

of water evaporation. The curve of heat flow shows another narrow peak ranging from 200 °C to 

250 °C, corresponding to the melting of the crystalline domains. The integration of the 

endothermic transition ranging from 200 °C to 250 °C gives the enthalpy for melting the crystalline 

domains per unit mass of the dry sample (with residual water) crystallineH . Therefore, the mass of 

the crystalline domains crystallinem  can be calculated as 0/crystalline crystalline crystallinem m H H � , where 

0 138.6 J/gcrystallineH   is the enthalpy of fusion of 100 wt.% crystalline PVA measured at the 

equilibrium melting point 0
mT  (5). Therefore, the crystallinity in the ideally dry sample dryX  

(without residual water) can be calculated as � �/dry crystalline residualX m m m � . With measured water 

content from TGA, the crystallinity in the swollen state can be calculated as 

� �1swollen dry waterX X I � � .  

3D printing meshes of PVA hydrogels. The microstructures of PVA hydrogels were fabricated 

by printing a 3D structure onto a glass slide (Corning). Print paths were generated via production 

of G-code that controls the XYZ motion of the 3D robotic gantry (Aerotech). G-code was either 

generated by manual coding or open-source software (Slic3r). The prepared PVA inks were stored 

in 5 mL syringe barrels, which fitted the nozzles with diameters of 400 µm (EFD Nordson). To 

achieve stable and optimal printing, we chose 50 kPa of air pressure (Ultimus V, Nordson EFD) 

as the printing pressure, and 15 wt% PVA (146 kDa, 99% hydrolysis ratio) aqueous solution as 

the printing ink. After deposition, the printed samples underwent five cycles of freezing (-20 °C 

for 8 hours) and thawing (20 °C for 3 hours) to achieve the final PVA hydrogel meshes. The 
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prestretched PVA meshes were acquired by applying cyclic prestretching of 3.5 over 1000 cycles 

on the dogbone-shaped pristine mesh in both in-plane directions.  
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Table S1. Comparison of combinational properties in various soft materials. Comparison of 

Young’s moduli, water contents, nominal strengths, and fatigue thresholds of strain-stiffening 

hydrogels (6, 7), bottlebrush elastomers (8, 9), tough hydrogels (10, 11), hydrogel composites (12, 

13), nanocrystalline hydrogels (4), and muscle-like hydrogels in this work. 
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Fig. S1. Conjugation of fluorochoromes on PVA for confocal imaging. (A)  The fabrication 

method to introduce conjugated fluorochoromes on PVA polymer chains. (B)  The chemical 

reaction for conjugation of fluorochorome on PVA. 
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Fig. S2. Morphology characterization of chemically cross-linked PVA hydrogel. (A) Confocal 

image. (B) SAXS pattern. 
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Fig. S3. The effect of applied prestretch and cycle number on the alignment of nanofibrils in 

PVA hydrogels. (A) Schematic illustration of mechanical training of hydrogels to form aligned 

nanofibrils. (B) Confocal images of the PVA hydrogels after 1, 100 and 600 cycles of prestretches 

of 4.6. (C) Confocal images of the PVA hydrogels after 1000 cycles of prestretches of 2.8, 3.4 and 

4.0.  
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Fig. S4. Confocal images, SAXS, and WAXS patterns of the freeze-thawed PVA hydrogel 

under a single cycle of load. (A) Representative stress vs. stretch curve of the freeze-thawed PVA 

hydrogel. (B) Confocal images, (C) SAXS patterns, and (D) WAXS patterns of the freeze-thawed 

PVA hydrogel at the applied stretch of i: λ = 1, ii: λ = 1.6, iii: λ = 2.2 under loading and at the 

applied stretch of iv: λ = 1.3 under unloading.  
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Fig. S5. Residual stretch of prestretched PVA hydrogels. (A) The residual stretch is defined as 

the ratio of the length at undeformed state after training LR over the length at undeformed state 

before training L0. (B) Residual stretch after Np cycles of applied prestretches of 4.6. (C) Residual 

plastic stretch after 1000 cycles of prestretches of pO . 
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Fig. S6. Measurement of nanofibril diameters in the prestretched PVA hydrogel.  (A) 

Confocal image. (B) SEM image. The sample for SEM imaging was first mechanically stretched 

to induce delamination of nanofibrils, and immediately crosslinked by glutaraldehyde to avoid 

further collapse during supercritical drying, followed by SEM observation. The measured 

diameters of aligned nanofibrils in the hydrogel range from  ~100 nm to ~1 µm. Scale bar is 20 

µm in (A) and 5 µm in (B). 
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Fig. S7. Representative thermal gravimetric analysis (TGA) curve of the freeze-thawed PVA 

hydrogel. m, mswollen, and mdry denote the mass of the sample during TGA measurement, in the 

swollen state, and in fully dry state, respectively.  
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Fig. S8. Measurement of crystallinities in PVA hydrogels. (A) Differential scanning calorimetry 

(DSC) thermographs of chemically cross-linked (i.e., Ch), freeze-thawed (i.e., FT), and 

prestretched PVA hydrogels (i.e., PFT). (B) Summarized crystallinities in the dry state and 

crystallinities in the swollen state of Ch, FT, and PFT hydrogels. 
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Fig. S9. Comparison of hysteresis in PVA hydrogels before and after mechanical training. 

(A) Loading-unloading nominal stress versus stretch curves of PVA hydrogels before and after 

training. (B) Nominal stress over loading cycles of PVA hydrogels before and after training with 

maximum applied stretch of 4.5 and 2.2, respectively. 
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Fig. S10. Validation of high fatigue threshold of the prestretched PVA hydrogel. (A) Nominal 

stress versus stretch of the prestretched PVA hydrogel after prolonged cycles of 1000. The 

enclosed area indicated by red line denotes the strain energy at the applied stretch of 2.2, i.e., 

� �
2.2

1
2.2W SdO O  ³ . (B) The effective nominal stress F/((W-c)t) versus cycle number N of the 

prestretched PVA hydrogel with a pre-crack c of 0.7 mm, where F is the measured force, W is the 

sample width, and t is the sample thickness. (C) Images of prestretched PVA hydrogel with a pre-

crack at the applied energy release rate of 1250 J/m2 at the cycle number of 10,000, 20,000, and 

30,000. (D) Images of another prestretched PVA hydrogel with a pre-crack at the applied energy 

release rate of 1300 J/m2 at the cycle number of 1, 5,000, and 10,000. High-contrast graphite 
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speckle patterns were applied to surfaces of samples, validating no observable crack propagation. 

Scale bars in (C) and (D) are 1 mm. 
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Fig. S11. Fatigue thresholds of PVA hydrogels. (A) Chemically cross-linked PVA hydrogel. (B) 

Freeze-thawed PVA hydrogel. 
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Fig. S12. 3D printing of PVA hydrogels into microstructures. (A) Optical image (left) and 

confocal image (right) of 3D printed PVA meshes (filling ratio: 50%). (B) Comparison of optical 

images of 3D printed mesh before and after mechanical training. Scale bars are 3 mm for left image 

and 500 µm for right image in (A), 500 µm in (B). 
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Legends for Supplementary Movie 

Movie S1. Cyclic loading of the trained PVA mesh. 
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