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a b s t r a c t 

Under tension, confined elastic layers can exhibit various modes of mechanical instabilities, 

including cavitation, fingering and fringe instabilities. While the cavitation has been exten- 

sively studied, the fingering and fringe instabilities have not been well understood, and the 

relations and interactions of these instabilities have not been explored yet. In this paper, 

we systematically study the formation, transition, interaction and co-existence of mechan- 

ical instabilities in confined elastic layers under tension. Through combined experimental, 

numerical and theoretical analysis, we find that the mode of instability is determined by 

both geometry and mechanical properties of the elastic layer through two non-dimensional 

parameters: layer’s lateral dimension over its thickness and elastocapillary length over the 

defect size. A phase diagram is calculated to quantitatively predict the occurrence of any 

mode of instability. We further show cavitation instability and fingering instability can co- 

exist and interact with each other in one elastic layer. The current work can help the de- 

sign of robust adhesives by rationally harnessing the desired mode of instabilities while 

suppressing the other modes. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Elastic layers with top and bottom surfaces adhered to rigid bodies are abundant in biological organisms such as mus-

sel plaques on rocks ( Waite et al., 2005 ), barnacle glues on ship hulks ( Vaccaro and Waite, 2001 ) and tendons on bones

( Benjamin et al., 2006; Desmond et al., 2015 ). In addition to the examples in nature, the stressed elastic layers have been

widely adopted in engineering applications such as sealants, insulators, bearings, and adhesives ( Biggins et al., 2013; Creton

and Ciccotti, 2016; Shull, 2002 ). More recently, tough and soft hydrogel adhesives ( Casares et al., 2015; Cha et al., 2013; Rose

et al., 2014; Yuk et al., 2016a ) have also been used in biocompatible soft robotics ( Kim et al., 2015; Palleau et al., 2013; Yuk

et al., 2017 ), electronics ( Keplinger et al., 2013; Lin et al., 2016 ) and living devices ( Lind et al., 2017; Liu et al., 2017 ). 

When the rigid bodies are pulled apart, the stressed elastic layers can undergo various modes of mechanical instabilities

due to mechanical loads and constraints. The formation and interaction of these mechanical instabilities highly affect the

mechanical robustness of engineering structures. For example, the load capacity of the adhesives highly depends on the
∗ Corresponding author at: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 
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Fig. 1. Schematics on deformation and instabilities in confined elastics layers under tension. a) Experimental setup. b) The cross-section of the constrained 

elastic layer in un-deformed and deformed state. c) Illustration of fringe instability, fingering instability and cavitation instability, corresponding to small, 

moderate and large aspect ratio α = D/H, respectively. 

 

 

 

 

 

 

 

 

 

 

occurrence of mechanical instabilities ( Creton and Ciccotti, 2016 ). The emergence of mechanical instabilities can also initiate

different failure mechanisms ranging from interfacial fracture to cohesive failure in relevant structures ( Crosby et al., 20 0 0 ).

In recent decades, various modes of mechanical instabilities in confined elastic layers under tension have been discovered

( Biggins et al., 2013; Gent and Lindley, 1959b; Ghatak and Chaudhury, 2003; Lin et al., 2016; Shull et al., 20 0 0 ). If the

elastic layer partially debonds from the rigid body, the delaminated interface can undulate periodically to give the interfacial

undulation ( Chakrabarti and Chaudhury, 2013; Chaudhury et al., 2015; Chung et al., 2006; Chung and Chaudhury, 2005;

Ghatak and Chaudhury, 2003 ). If perfect bonding between the elastic layer and the rigid bodies is maintained, a cavity can

nucleate and grow within the elastic layer when the hydrostatic tensile stress in any region of the elastic layer reaches a

critical value, giving the cavitation instability (e.g., Fig. 1 c) ( Ball, 1982; Fond, 2001; Gent and Lindley, 1959b; Hang-Sheng

and Abeyaratne, 1992; Lopez-Pamies et al., 2011 ). Even if perfect bonding between the elastic layer and the rigid substrates
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is maintained and cavitation instability is suppressed by tuning the material properties and geometry of the elastic layer,

the exposed meniscus can become unstable, forming fingering instability ( Biggins et al., 2013; Overvelde et al., 2016; Shull

et al., 20 0 0 ) or fringe instability ( Lin et al., 2016 ). While fingering instability initiates at the middle section of the exposed

meniscus, fringe instability forms at the fringe portion of the exposed meniscus (e.g., Fig. 1 ). 

This paper is aimed to provide a systematic understanding on the relations and interactions of the three modes of in-

stabilities in perfectly-bonded elastic layers under tension: cavitation, fingering and fringe instabilities. While the cavitation

instability has been intensively studied ( Gent and Lindley, 1959b; Kundu and Crosby, 2009 ), the recently-discovered fingering

and fringe instabilities have not been well understood ( Biggins et al., 2013; Shull et al., 20 0 0 ). It is known that the insta-

bility is determined by the geometries and mechanical properties of the elastic layers, but there exists no model or theory

to predict which mode (i.e., cavitation, fingering or fringe) will emerge in perfectly-bonded elastic layers under tension. In

addition, the co-existence and interactions of different modes of instabilities have not been studied. 

In this paper, we perform the first set of systematic study on the formation, transition, interaction and co-existence of

mechanical instabilities in confined elastic layers under tension, through combined experimental, numerical and theoretical

analysis. We first discuss the characteristic features of individual mode of instability. Then we develop a theory for large

deformation in a confined elastic layer with cylindrical shape under tension. The theory can correlate the applied stress,

the applied stretch and the hydrostatic pressure in the elastic layer. Thereafter, we perform the linear perturbation analysis

on the deformation of the elastic layer to theoretically predict the onset of fringe and fingering instabilities; and theoreti-

cally calculate the critical stress and critical stretch of cavitation instability. We find that the initial occurrence of instability

can be tuned by both geometrical and mechanical properties of the elastic layer through two non-dimensional parameters:

layer’s lateral dimension over its thickness and elastocapillary length over the defect size. We further show that cavitation

instability and fingering instability can coexist in one elastic layer under tension. Systematically understanding of the for-

mation and interactions of various mechanical instabilities in elastic layers under tension can provide a guideline for the

design of robust adhesives by rationally harnessing the desired mode of instabilities while suppressing the other modes. 

The plan of the paper is as follow. Section 2 defines the physical and dimensionless parameters used in this work. In

Section 3 , we discuss the experimental and simulation methods. In Section 4 , we qualitatively discuss various modes of in-

stabilities in elastic layers under tension. In Section 5 , we first derive the deformation field in constrained elastic layer under

tension, and then identify the critical point for the onset of each mode of instability using perturbation theory. In Section 6 ,

we discuss the formation and evolution of each mode of instability through combined experimental and simulation results.

We particularly discuss the relations between the applied stress and stretch in elastic layers under tension. In Section 7 , we

construct a phase diagram to predict the occurrence of any mode of instability in elastic layers. In Section 8 , we discuss the

coexistence and interactions of cavitation instability and fingering instability in one elastic layer under tension. 

2. Physical and dimensionless parameters 

As illustrated on Fig. 1 b, we focus on elastic layers of cylindrical shape with height H and diameter D at the un-deformed

(reference) state in this work. The material of the elastic layer is taken to be neo-Hookean with shear modulus μ and surface

energy γ . Cavities with maximum diameter A may exist in the layer as defects. A ratio between surface energy and shear

modulus of the material, γ / μ, gives the elastocapillary length, which characterizes the effect of the surface tension on the

mechanical behaviors of the material. In the current study, we set the elastocapillary length γ / μ to be much smaller than

the macroscopic dimensions of the sample (i.e. H and D ), but on the same order or larger than the defect size A . Through

dimensional argument, we can obtain the following two dimensionless parameters: 

α = 

D 

H 

, β = 

γ

μA 

, (1)

which affect the mechanical behavior of the elastic layer. The elastic layer is bonded on two rigid plates without delamina-

tion during its deformation and instabilities. A tensile force F is applied on the rigid plates, which deforms the elastic layer

to the current height h . We define the applied nominal stress S and the applied stretch λ on the elastic layer as (see Fig. 1 )

S = 

4 F 

πD 

2 
, λ = 

h 

H 

. (2)

When the applied nominal stress or stretch reaches a critical value S c or λc , a mode of instability sets in the elastic layer.

Geometrically, the cylindrical elastic layer in the un-deformed state occupies a region 0 ≤ R ≤ D /2, 0 ≤ � < 2 π and

−H/ 2 ≤ Z ≤ H/ 2 . For convenience, we define the normalized location at the reference configuration R̄ = 

R 
D/ 2 and Z̄ = 

Z 
H/ 2 

with R̄ ∈ [ 0 , 1 ] and Z̄ ∈ [ −1 , 1 ] . 

3. Experimental and simulation methods 

3.1. Sample preparation 

We chose polyacrylamide hydrogel (PAAm) as a model hyper-elastic solid with negligible hysteresis and low rate sensi-

tivity ( Lin et al., 2016; Lin et al., 2014b; Mao et al., 2017; Yang et al., 2013 ). To make a PAAm hydrogel sample, a precursor
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Fig. 2. Materials for the constrained elastic layers. a) Measured nominal stress–stretch curves for the samples with various constituents. Solid 

line represents the experimental data; dashed line represents the fitted neo-Hookean model. b) Weight ratio of polyacrylamide (AAm) and N,N 

′ - 
methylenebisacrylamide (Bis), shear modulus μand elastocapillary length γ / μ for each material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution was prepared by mixing acrylamide (Sigma, A8887), alginate (Sigma, A2033), N,N-methylenebisacrylamide (Sigma, 

146072) as the crosslinker for polyacrylamide and 102 μl 0.2 M ammonium persulfate (Sigma, 248614) as an initiator for

polyacrylamide ( Lin et al., 2014a; Lin et al., 2014b; Yuk et al., 2016b ). After degassing the precursor solution in a vacuum

chamber, we added 8.2 μl N,N,N 

′ ,N 

′ -tetramethylethylenediamine (Sigma, T7024-50M) into the total precursor solution of

10 ml as the crosslinking accelerator for acrylamide. We tuned the shear modulus μ of the sample as 1.1 kPa, 2.2 kPa, 3.0 kPa,

3.6 kPa, 11 kPa and 14 kPa by controlling both the concentration of polymer and crosslink density (see detailed material con-

stituents in Fig. 2 ). By adopting the measured surface tension γ = 0 . 07 J / m 

2 for PAAm hydrogel ( Kundu and Crosby, 2009 ),

we can set the elastocapillary length γ / μ for gel A, gel B , gel C, gel D, gel E and gel F as 65 μm , 32 μm , 23 μm , 19 μm ,

6 . 5 μm and 5 μm respectively. To control the maximum defect size within the sample, we degassed the precursor solution

first and mixed a controlled volume amount of nitrogen gas of 100 μl in one syringe with 10 ml total precursor solution

in another syringe for 10 times. The maximum defect size within the sample can be well controlled as A ∼ 1 μm for the

material with various constituents. 

3.2. Mechanical testing 

The experimental setup used in the current study is illustrated schematically in Fig. 1 a. A layer of a soft yet stretchable

hydrogel was robustly bonded onto two thick and transparent glass substrates ( Yuk et al., 2016a ). The diameter of the

hydrogel layer D was varied from 6 mm to 140 mm and the thickness H from 1.5 mm to 6 mm, so that the aspect ratio of

the elastic layer α was selected in a wide range from 1 to 50. During a typical test, the bottom glass substrate of the sample

was fixed, and the top glass substrate was pulled upward at a controlled loading rate of 0.016 s −1 without causing any

lateral displacement, using a universal material test machine (2 kN load cell for samples with diameter D > 12 mm and 20 N

load cell for samples with diameter D < 12 mm; Zwick/Roell Z2.5). Both the applied force and the loading displacement

was measured by the load cell and the deformation of the layer’s free surfaces was recorded by cameras viewing from

both side view and top view. To suppress the interfacial detachment, we used a functional silane, 3-(trimethoxysilyl) propyl

methacrylate (TMSPMA), to modify the surfaces of transparent glass and then covalently crosslinked the long chain polymer

network of polyacrylamide (PAAm) to the silanes on the modified surfaces of glass substrates ( Yuk et al., 2016a ). All the

mechanical tests in this paper were performed in the air and measured in an “as-prepared” state. 

3.3. Finite-element simulation 

In addition to a set of systematic experimental studies, we performed corresponding numerical simulations to capture

the deformation and instability of an elastic layer with the finite element method using ABAQUS/Explicit. To focus on a pure

elastic behavior at relative short time scale, we modeled the hydrogel as a neo-Hookean material and suppressed the water

diffusion in the hydrogel in the current study. We set the ratio between bulk modulus and shear modulus K / μ as large as

we can, and in this case is 20 0 0, to capture the incompressibility of the material. The type of element was taken as C3D8R

and the mesh size was taken as small as ∼ 1/10 of the smallest feature dimension for all samples to ensure the accuracy of

the simulation. Additionally, a mass scaling technique was used to obtain results within a reasonable computation time. All

numerical models have the same dimensions and loading setup as the experimental specimens. 



S. Lin et al. / Journal of the Mechanics and Physics of Solids 106 (2017) 229–256 233 

Fig. 3. Morphology difference between fringe instability and fingering instability. a) Undulation contours at the different planes right after the onset of 

fringe instability for the sample with α = 2 . Maximum amplitude occurs at Z̄ = ±0 . 81 . b) Undulation contours at the different planes right after the onset 

of fingering instability for the sample with α = 12 . Maximum amplitude occurs at Z̄ = 0 . c) The normalized amplitude of undulation contours versus Z̄ 

right after the onset of instabilities for the sample with α = 2 and α = 12 . d) The Z̄ 0 for the maximum amplitude of the undulation contours versus aspect 

ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Modes of instabilities 

Fig. 1 c schematically illustrates the qualitative differences among fringe, fingering and cavitation instabilities. If the elastic

layer’s radius is comparable with or lower than its thickness (e.g., α < 4), the free surfaces of the fringe portions of the layer

gradually undulate into a periodic pattern under a critical applied stretch, giving the fringe instability ( Lin et al., 2016 ). If

the layer’s aspect ratio is moderately high (e.g . , 6 < α < 20), the deformed meniscus maintains a parabolic shape, until a

spatially periodic pattern of air fingers invade the meniscus at a critical applied stretch ( Biggins et al., 2013; Shull et al.,

20 0 0 ). If the layer’s aspect ratio is extremely high (e.g ., α > 30) or the dimensionless elastocapillary number β is relatively

low, a cavity nucleates and grows within the bulk sample prior to the formation of the undulating patterns on the exposed

lateral surfaces. 

While both fringe and fingering instabilities feature the undulation of the elastic layer’s meniscus, they initiate at the

fringe and middle portions of the meniscus, respectively. Therefore, the highest amplitude of the undulation for fringe and

fingering, right after their initiation, is expected to appear at the fringe and middle portions of the meniscus, respectively

(i.e. we take the vertical location that gives the highest undulation amplitude Z̄ 0 as the location where the undulations

initiate in simulation). In Fig. 3 a and b, we give the simulation results for fringe ( α = 2 ) and fingering ( α = 12 ) instabilities in

elastic layers with different aspect ratios. We further quantify the undulation amplitude A m 

for fringe ( α = 2 ) and fingering

( α = 12 ) instabilities as a function of the normalized vertical location Z̄ (see Fig. 3 c). Evidently, the highest amplitude of
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the undulation for fringe and fingering indeed appears at the fringe ( ̄Z = 0 . 81 ) and middle ( ̄Z = 0 ) portions of the meniscus,

respectively. In Fig. 3 d, we further plot the vertical location that gives the highest undulation amplitude Z̄ 0 as a function

of the elastic layer’s aspect ratio α, which shows that critical transition aspect ratio from fringe to fingering instability as

α f ringe − f ingering = 5 . 

5. Theoretical analysis 

In this part, we will develop a theory to understand i). the large deformation and stress fields in the constrained elastic

layer under tension and ii). the critical points for the onset of fringe, fingering and cavitation instabilities. We first solve the

equations of an incompressible neo-Hookean layer under tension and obtain the meniscus shapes, the applied stress–stretch

relations, and the hydrostatic pressure versus stretch in the elastic layer. Thereafter, we perform the linear perturbation

analysis to predict the critical stretch λc and the critical stress S c for the onset of both fringe instability and fingering

instability. 

5.1. Large deformation and stress fields in constrained elastic layers under tension 

Geometrically, the elastic layer in the un-deformed state occupies a region 0 ≤ R ≤ D /2, 0 ≤ � < 2 π and −H/ 2 ≤ Z ≤ H/ 2 .

A material particle in the layer is labeled by its coordinate ( R, �, Z ) in the un-deformed state with { e R , e �, e Z } as the basis

in cylindrical coordinate (see Fig. 1 b). In the deformed state, the material particle moves to a place of coordinates ( r, θ , z ),

which are functions of ( R, �, Z ). Since the elastic layer deforms axisymmetrically prior to instability, the displacement in

� direction u � = 0 and the displacement in radius direction u R and that in axial direction u Z are independent of �. Here,

we make a single assumption on the deformation of the layer, that is: any horizontal plane in the layer at the un-deformed

state remains planar upon deformation ( Klingbeil and Shield, 1966; Lin et al., 2016; Shariff, 1989 ). Based on the axisymmetric

deformation, horizontal-plane assumption and incompressibility of the material, we can specify the displacement field in

the elastic layer as 

u R ( ̄R , Z̄ ) = R̄ u 1 ( ̄Z ) , (3) 

u Z ( ̄Z ) = u 2 ( ̄Z ) , (4) 

with R̄ = 

R 
D/ 2 , Z̄ = 

Z 
H/ 2 . The linear dependence of u R on R̄ is directly from the horizontal plane assumption with the incom-

pressibility. Using the displacement field in Eq. (3) and Eq. (4) , we can express the deformation gradient in the layer as:

F = 

[ 
λrR 0 γrZ 

0 λθ� 0 

0 0 λzZ 

] 
, (5a) 

with 

λrR = 1 + 

1 

D/ 2 

u 1 , (5b) 

λθ� = 1 + 

1 

D/ 2 

u 1 , (5c) 

λzZ = 1 + 

1 

H/ 2 

u 

′ 
2 , (5d) 

γrZ = 

1 

H/ 2 

R̄ u 

′ 
1 , (5e) 

with the prime for differentiating respect to Z̄ , or explicitly, u ′ 1 = 

d u 1 
d ̄Z 

and u ′ 2 = 

d u 2 
d ̄Z 

. The incompressibility of the elastic layer

also enforces the conservation of volume, which reads as: 

det (F ) = λrR λθ�λzZ = 1 . (6) 

The elastic layer is taken as an incompressible neo-Hookean solid with strain energy density function ψ = 

μ
2 [ tr ( F 

T F ) − 3 ] .

Therefore, the nominal stress tensor S is expressed through S = μF − p ∗F −T and the Cauchy stress tensor is expressed

through σ = S F T , namely: 

S /μ = 

( 
λrR − p̄ / λrR 0 γrZ 

0 λθ� − p̄ / λθ� 0 

λθ�γrZ p̄ 0 λzZ − p̄ / λzZ 

) 
, (7a) 
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σ/μ = 

( 
λ2 

rR − p̄ + γ 2 
rZ 0 γrZ λzZ 

0 λ2 
θ�

− p̄ 0 

γrZ λzZ 0 λ2 
zZ − p̄ 

) 
, (7b)

where p ∗ is the Lagrange multiplier to enforce the incompressibility and p̄ = p ∗/μ is the corresponding dimensionless form.

The equilibrium equations read Div S = 0 . Since the equilibrium equation along the hoop direction will be satisfied automat-

ically, then the remaining equilibrium equations along radius direction and axial direction are 

− 1 

λrR 

∂ p̄ 

∂ R̄ 

+ α
∂ γrZ 

∂ ̄Z 
= 0 , (8)

λrR 
∂ ( γrZ p̄ ) 

∂ R̄ 

+ 

λrR γrZ p̄ 

R̄ 

+ α
∂ ( λzZ − p̄ / λzZ ) 

∂ ̄Z 
= 0 , (9)

with α = D/H. Since the highest order of R̄ in γ rZ is linear and in order to satisfy Eq. (8) , p̄ should be a function of R̄ 2 .

With this observation, we can solve both Eq. (8) and Eq. (9) analytically (see Appendix A.1 for more details). By imposing

the boundary conditions: d u 1 / d ̄Z | Z̄ =0 = 0 , u 1 ( ̄Z = ±1) = 0 and u 2 ( ̄Z = 0) = 0 , the specific functions u 1 ( ̄Z ) and u 2 ( ̄Z ) can be

identified as 

u 1 ( ̄Z ) = 

D 

2 

[
cosh (κ Z̄ ) 

cosh (κ) 
− 1 

]
, (10a)

u 2 ( ̄Z ) = 

H 

2 

[
sinh (2 κ) 

2 κ

tanh (κ Z̄ ) 

tanh (κ) 
− Z̄ 

]
, (10b)

where κ is an internal loading parameter which is correlated with the applied stretch through 

λ = 

sinh (2 κ) 

2 κ
. (10c)

With the calculated functions of u 1 ( ̄Z ) and u 2 ( ̄Z ) , we further plot the meniscus shape at various stretches for the sample

with α = 4 and α = 8 shown in Fig. 4 . Our analytical results match well with the numerical results from 2D asymmetrical

finite-element model. At small stretches (e.g. λ = 1 . 5 for α = 4 ), the meniscus shape is parabolic ( Biggins et al., 2013 ); while

as stretch becomes large (e.g. λ = 2 . 5 for α = 4 ), the meniscus shape deviates from the parabolic profile severely and the

middle portion of the sample is almost uniformly deformed as discussed in previous report ( Lin et al., 2016 ). 

With the specified functions of u 1 ( ̄Z ) and u 2 ( ̄Z ) , we can further calculate the dimensionless Lagrange multiplier p̄ in the

form of (see details in Appendix. A.1 ): 

p̄ 
(
R̄ , Z̄ 
)

= q 0 
(
Z̄ 
)

+ 

(
R̄ 

2 − 1 

)
q 1 
(
Z̄ 
)
, (11a)

with 

q 0 
(
Z̄ 
)

= 

cosh 

2 
(κ Z̄ ) 

2 cosh 

2 κ
κ2 α2 + 

cosh 

4 κ

2 cosh 

4 
(κ Z̄ ) 

+ C 3 , (11b)

q 1 
(
Z̄ 
)

= 

cosh 

2 
(κ Z̄ ) 

2 cosh 

2 κ
κ2 α2 , (11c)

where C 3 is to be determined by a boundary condition. 

Owning to the assumption that any horizontal plane in the layer at the un-deformed state remains planar upon defor-

mation, it’s impossible to satisfy the traction free boundary conditions for the whole exposed surfaces (i.e. at any height of

the sample). Here, since we specifically focus on the case when the instabilities initiates at exact the middle plane or closer

to the middle plane, we enforce the boundary condition at Z̄ = 0 , namely the traction t R = S · e R shall be zero at R̄ = 1 and

Z̄ = 0 , where { e R , e �, e Z } is the basis in cylindrical coordinate. Since S θR = S zR = 0 owing to the symmetric condition at the

middle plane, the only boundary condition needs to be satisfied is S rR = μ( λrR − p̄ / λrR ) = 0 at the middle plane. Therefore,

constant C 3 can be identified as: 

C 3 = 

1 

cosh 

2 κ

(
1 − 1 

2 

κ2 α2 
)

− 1 

2 

cosh 

4 κ, (12)

and full expression of dimensionless Lagrange multiplier reads as 

p̄ = 

1 

2 

( 
cosh 

4 κ

cosh 

4 
(
κ Z̄ 
) − cosh 

4 κ

) 
+ 

κ2 α2 

2 

( 
R̄ 

2 
cosh 

2 
(
κ Z̄ 
)

cosh 

2 κ
− 1 

cosh 

2 κ

) 
+ 

1 

cosh 

2 κ
. (13)

We further calculate the averaged nominal stress applied on the layer S through 

S = 

4 

HπD 

2 
· dW 

dλ
, (14)
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Fig. 4. Theoretical and simulation results on the deformation and stress fields in constrained neo-Hookean layers under tension. a) Comparison between 

theory and simulation of the meniscus profiles for the sample with aspect ratio of α = 4 at the stretch of λ = 1 . 5 , λ = 2 . 0 and λ = 2 . 5 . Solid line represents 

the theoretical results; dashed line represents the simulation results. b) Comparison between theory and simulation of the meniscus profiles for the sample 

with aspect ratio of α = 8 at the stretch of λ = 1 . 3 , λ = 1 . 6 and λ = 1 . 9 . Solid line represents the theoretical results; dashed line represents the simulation 

results. c) Theoretically calculated applied nominal stress versus stretch for the samples with various aspect ratios. d) Theoretically calculated hydrostatic 

pressure at the center of the samples versus stretch for the sample with various aspect ratios. 

 

 

 

 

 

 

 

 

 

where W is the total elastic energy of the layer which can be calculated by integrating ψ over the volume of the layer:

W = 2 
∫ H 

2 
0 

∫ D 
2 

0 
2 πRψ(R, Z) dR dZ. After algebraic simplification, the applied nominal stress S can be expressed as: 

S/μ = S 0 ( κ) + α2 S 1 ( κ) , (15) 

where both S 0 and S 1 are functions of a single variable with respect to the loading parameter κ (see detailed expressions in

Appendix A.1 ). As shown in Fig. A.1 , S 0 monotonically increases with the applied stretch, while S 1 is non-monotonic with a

peak point at κ = 0 . 89 (i.e. λ = 1 . 62 ). When α is very small, S 0 is dominated, and there is no peak displayed in the stress–

stretch curve. With the increase of aspect ratio α, the second term α2 S 1 will gradually become dominated and a peak stress

will display in the overall applied stress–stretch curve which is associated with the global necking mode ( Lin et al., 2016 ).

The overall S / μ curves for various α are shown in Fig. 4 c. In Fig. A.2 a, we further show that the initial slope of our curves

agrees with the result from the calculations based on small deformation ( Gent and Lindley, 1959a; Klingbeil and Shield,

1966; Tupholme and Gover, 2002 ) . 

Next, we derive the hydrostatic pressure at the center of the sample, which is given by p 0 = p( Z = 0 , R = 0) =
1 
3 tr (σ) | 

Z =0 , R =0 
where σ = S F T is the Cauchy stress tensor. From Eq. (7b) , the expression of the hydrostatic pressure can

be expressed as: 

p 0 /μ = 

λ2 
rR + λ2 

θ�
+ λ2 

zZ + γ 2 
rZ − p̄ . (16) 
3 
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Inserting λrR ( ̄Z = 0) = λθ�( ̄Z = 0) = 

1 
cosh κ

, λzZ ( ̄Z = 0) = cosh 

2 κ , γrZ ( ̄R = 0 , ̄Z = 0 ) = 0 and p̄ ( ̄R = 0 , ̄Z = 0 ) = 

1 

cosh 2 κ
−

κ2 α2 

2 cosh 2 κ
, one can write the hydrostatic pressure at the center of the sample as 

p 0 /μ = 

cosh 

4 
(κ) 

3 

− 1 

3 cosh 

2 
(κ) 

+ 

κ2 α2 

2 cosh 

2 
(κ) 

(17)

The p 0 / μ vs. λ curves for elastic layers with various aspect ratios α are shown in Fig. 4 d. To validate our results, we

calculate 1 
μ

d p 0 
dλ

| λ=1 and compare it with the reported small-strain solutions ( Klingbeil and Shield, 1966 ), which shows good

agreement (see Fig. A.2 b). 

As a summary of this part, we have developed an analytical model to account for the large deformation of a constrained

incompressible neo-Hookean layer under tension. The model gives analytic results on the deformation (Eq. (10) , Fig. 4 a and

b), the applied nominal stress ( Eq. (15) , Fig. 4 c), and the hydrostatic pressure at the center of the layer ( Eq. (17) , Fig. 4 d)

as functions of the applied stretch on the layer. Our analytical model is validated by the results from numerical simulations

and reported small-deformation solutions. 

5.2. Onset of fringe and fingering instabilities 

In this section, we will use the perturbation analysis to calculate the critical points for the onset of fringe and fingering

instabilities. We introduce a trial form for the solutions consisting of the rotational invariant part at base state solved in

Section 5.1 and an infinitesimal oscillatory part. The fields of deformation and Lagrange multiplier with first order pertur-

bation read as: 

x = ( x ) 
0 + ε ̃  x , (18)

p̄ = ( ̄p ) 
0 + ε ̃  p , (19)

where ɛ is a dimensionless small parameter, ˜ x and ˜ p are perturbed fields, ( x ) 0 and ( ̄p ) 0 are the rotational invariant fields at

base state, which is solved in Section 5.1 in the cylindrical basis { e R , e �, e Z } as: 

( x ) 
0 = 

D ̄R 

2 

[
cosh (κ Z̄ ) 

cosh (κ) 
− 1 

]
e R + 

H 

2 

[
sinh (2 κ) 

2 κ

tanh (κ Z̄ ) 

tanh (κ) 
− Z̄ 

]
e Z , (20)

( ̄p ) 
0 = 

1 

2 

[ 
cosh 

4 κ

cosh 

4 
(
κ Z̄ 
) − cosh 

4 κ

] 
+ 

κ2 α2 

2 

[ 
R̄ 

2 
cosh 

2 
(
κ Z̄ 
)

cosh 

2 κ
− 1 

cosh 

2 κ

] 
+ 

1 

cosh 

2 κ
. (21)

We assume the perturbed displacement field and the perturbed Lagrange multiplier follow the forms, 

˜ x = A 1 (R ) u 1 (Z) cos ( ω�) e R + A 2 (R ) u 1 (Z) sin ( ω�) e � + A 3 (R ) u 2 (Z) sin ( ω�) e Z , (22)

˜ p = A 4 (Z, R ) cos (ω�) , (23)

where A i ( i = 1 , 2 , 3 , 4 ) are the amplitudes of perturbation. Therefore, the perturbed deformation gradient may write as

F = (F ) 0 + ε Grad ̃ x , where ( F ) 0 is the rotational invariant deformation gradient at base state expressed in Eq. (5). By inserting

the perturbed displacement field, the deformation gradient reads as: 

F = 

⎡ 
⎢ ⎣ 

λrR + ε A 

′ 
1 u 1 cos (ω�) −ε A 1 ω+ A 2 

R 
u 1 sin (ω�) γrZ + ε A 1 u 

′ 
1 cos (ω�) 

ε A 

′ 
2 u 1 sin (ω�) λθ� + ε A 2 ω+ A 1 

R 
u 1 cos (ω�) ε A 2 u 

′ 
1 sin (ω�) 

ε A 

′ 
3 u 2 cos (ω�) −ε A 3 ω 

R 
u 2 sin (ω�) λzZ + ε A 3 u 

′ 
2 cos (ω�) 

⎤ 
⎥ ⎦ . (24)

Here the prime represents for differentiating respects to R or Z , i.e. A 

′ 
1 

= 

d A 1 
dR 

, A 

′ 
2 

= 

d A 2 
dR 

, A 

′ 
3 

= 

d A 3 
dR 

, u ′ 
1 

= 

d u 1 
dZ 

and u ′ 
2 

= 

d u 2 
dZ 

. The

incompressibility of the elastic layer is enforced by det F = 1 , which implies (expand to the first order of ɛ , see details in

Appendix A.2 ): 

λzZ A 

′ 
1 u 1 + λzZ 

A 2 ω + A 1 

R 

u 1 − γrZ A 

′ 
3 u 2 + λrR A 3 u 

′ 
2 = 0 . (25)

The perturbation in deformation gradient will further induce a perturbation in nominal stress which reads as S /μ =
(S ) 0 /μ + ε ̃ S . Here, ˜ S is the perturbed normalized nominal stress, and each component of which is expressed as: 

˜ S rR = 

[
A 

′ 
1 u 1 − ( ̄p ) 

0 
(
γrZ A 

′ 
3 u 2 − λzZ A 

′ 
1 u 1 

)
− A 4 

λrR 

]
cos ( ω�) , (26a)
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˜ S r� = 

[
−A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 λzZ A 

′ 
2 u 1 

]
sin ( ω�) , (26b) 

˜ S rZ = 

[
A 1 u 

′ 
1 + ( ̄p ) 

0 λrR A 

′ 
3 u 2 

]
cos ( ω�) , (26c) 

˜ S θR = 

[
A 

′ 
2 u 1 − ( ̄p ) 

0 λzZ 
A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 γrZ 

A 3 ω 

R 

u 2 

]
sin ( ω�) , (26d) 

˜ S θ� = 

[
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 − ( ̄p ) 

0 
(
λzZ A 

′ 
1 u 1 − γrZ A 

′ 
3 u 2 + λrR A 3 u 

′ 
2 

)
− A 4 

λrR 

]
cos ( ω�) , (26e) 

˜ S θZ = 

[
A 2 u 

′ 
1 − ( ̄p ) 

0 λrR 
A 3 ω 

R 

u 2 

]
sin ( ω�) , (26f) 

˜ S zR = 

[
A 

′ 
3 u 2 + λrR γrZ A 4 + ( ̄p ) 

0 γrZ 

(
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 

)
+ ( ̄p ) 

0 λrR A 1 u 

′ 
1 

]
cos ( ω�) , (26g) 

˜ S z� = 

[
−A 3 ω 

R 

u 2 − ( ̄p ) 
0 γrZ A 

′ 
2 u 1 + ( ̄p ) 

0 λrR A 2 u 

′ 
1 

]
sin ( ω�) , (26h) 

˜ S zZ = 

[
A 3 u 

′ 
2 − λ2 

rR A 4 − ( ̄p ) 
0 λrR u 1 

(
A 

′ 
1 + 

A 2 ω + A 1 

R 

)]
cos ( ω�) , (26i) 

A balance of the forces exerted on an element of the perturbed material further leads to three equations of equilibrium

Div ̃  S = 0 . These equations are only required to satisfy in Z̄ = Z̄ 0 with Z̄ 0 being the vertical location where the undulations

initiates. The four unknown A i ( i = 1 , 2 , 3 , 4 ) can be fully specified by these three equations and the incompressibility

condition in Eq. (25) with boundary conditions. The boundary conditions are still the traction t R = S · e R be zero at R̄ = 1

(For cases when Z̄ 0 � = 0 , this is an approximation). Since the rotational invariant stress at base state already satisfies the

boundary conditions, then we have ˜ S · e R = 0 at R̄ = 1 . Also we are looking for the solution which decays as R̄ → 0 (see

details in Appendix A.2 ). 

By simplifying the four equations through eliminating A 2 and A 4 , we can finally obtain two governing equations in the

dimensionless form with respect to A 1 and A 3 (for more details, see Appendix A.2 ). We can solve these equations by numer-

ically or even analytically with infinite series. However, to obtain the physical insight, we choose to make some approxima-

tions to simplify the equations. We notice the difference between fingering and fringe instabilities: fingering instability is

an instability mode with A 3 = 0 (see Fig. A.3 a) while the fringe instability is an instability mode with generally A 3 � = 0 (see

Fig. A.3 b). Physically, the zero amplitude along Z direction for fingering instability is a consequence of symmetry. For fringe

instability, we argue that if α is slightly smaller than the theoretical transition aspect ratio α f ringe − f ingering between finger-

ing instability and fringe instability, A 3 	 A 1 and A 3 	 A 2 , or explicitly A 3 ≈ 0. By adopting this approximation, the only

governing ODE to be solved is with respect to the amplitude along radius direction A 1 in the dimensionless form, reading

as (see details in Appendix A.2 . For dimensionless form, the prime is for differentiating respect to R ): 

R̄ 

4 A 

(4) 
1 

+ 6 ̄R 

3 A 

(3) 
1 

+ 

(
5 − 2 ω 

2 
)
R̄ 

2 A 

′′ 
1 −
(
2 ω 

2 + 1 

)
R̄ A 

′ 
1 + 

(
ω 

2 − 1 

)2 
A 1 

−A 

2 
h R̄ 

2 
[
R̄ 

2 A 

′′ 
1 + 3 ̄R A 

′ 
1 −
(
ω 

2 − 1 

)
A 1 

]
= 0 , (27) 

with A h = 

√ 

κ2 α2 

1 −λrR 
. Next we impose the boundary conditions on this governing ODE. The boundary condition of ˜ S zR = 0

automatically satisfies with the condition that A 3 	 A 1 and A 3 	 A 2 . The remaining two boundary conditions in the dimen-

sionless form read as: 

A 

(3) 
1 

(1) + 4 A 

′′ 
1 (1) + 

[
1 − 2 ω 

2 − ζω 

2 − A 

2 
h 

]
A 

′ 
1 (1) + 

[
ω 

2 − 1 + ω 

2 κ2 α2 − A 

2 
h 

]
A 1 (1) = 0 , (28a) 

A 

′′ 
1 (1) + ( 2 − ζ ) A 

′ 
1 (1) + ζ

(
ω 

2 − 1 

)
A 1 (1) = 0 , (28b) 

with 

ζ ( ̄Z 0 ) = 

1 

2 

κ2 α2 + 

1 

2 

λ−6 
rR + C 3 λ

−2 
rR , (28c) 

C 3 = 

1 

cos 2 κ

[ 
1 − 1 

2 

κ2 α2 
] 

− 1 

2 

cos 4 κ. (28d) 
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Fig. 5. Theoretical and simulation results on the critical points of fingering instability and fringe instability for the sample with aspect ratios α > 4. a) 

Comparison of the critical stretch λc for the onset of instabilities between theory and simulation. b) Comparison of the critical mode number ω c between 

theory and simulation. a) Comparison of the critical applied stress S c between theory and simulation. 

Fig. 6. Theoretical results on the transition between fringe and fingering instability. a) Critical stretch for the sample with the locations for the initiation 

of undulations at Z̄ 0 = 0 and Z̄ 0 = 0 . 2 . b) The location of the initiation of the instabilities Z̄ 0 for the sample with different aspect ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are four characteristic roots for Eq. (27) : two of them are decay solutions (decreases as R̄ → 0 ) and the other two

are non-decay (diverges as R̄ → 0 ). The two non-decay solutions vanish. After going through the algebra, the general solution

of A 1 can be written as (see details in Appendix A.2 ): 

A 1 = c 1 ̄R 

ω−1 + c 2 
1 

I ω ( A h ) 
I ω 
(
A h ̄R 

)
R̄ 

−1 , (29)

where I ω ( • ) is the modified Bessel function of the first kind, c 1 and c 2 are arbitrary pre-factors (see details in Appendix A.2 ).

Insert this solution into the two boundary conditions in Eq. (28a) and Eq. (28b) , The existence of the non-trivial solution

depends on whether the following equation has solution or not: (
l 2 ω 

3 A h + lA 

3 
h − l 2 ω A h 

) I ω−1 ( A h ) 

I ω ( A h ) 
−
(
2 l ω 

2 A 

2 
h + 2 l 2 ω 

4 − 2 l 2 ω 

2 + A 

4 
h 

)
+ 

(
2 l ω 

2 + ωA 

2 
h − lω A h 

I ω−1 ( A h ) 

I ω ( A h ) 

)
κ2 α2 = 0 , (30)

where l = 1 + ζ . 

By minimizing κ through ω at each plane Z , we can have the critical stretch λc , the critical number of undulations ω c

and the vertical location of the plane where the undulations initiate Z 0 . As shown in Fig. 5 a and b, our theory predicts

quite well for both λc and ω c at the onset of instabilities in the range α > 4, comparing with the simulation results. With

the deformation field we derived in Section 5.1 , we further predict the critical applied nominal stress S c for the onset of

instabilities shown in Fig. 5 c. Our theory with incompressible assumption is slightly higher than the simulation results with

negligible compressibility (in simulation, bulk modulus is set 20 0 0 times the shear modulus, i.e. K/μ = 20 0 0 ), which is

reasonable. 

Moreover, to theoretically identify the critical geometrical aspect ratio between fringe instability and fingering instability

α f ringe − f ingering , we compare the critical stretch for the case with initial location of undulations at Z̄ 0 = 0 and Z̄ 0 � = 0 . If the

critical stretch for the case Z̄ 0 = 0 is the smallest, then fingering instability will be triggered first. On the other hand, if

the critical stretch for the case Z̄ 0 = 0 is not the smallest, fringe instability will be triggered first and fingering instability

will be suppressed. Fig. 6 a presents the critical stretch for both cases with Z̄ = 0 and Z̄ = 0 . 2 calculated from Eq. (30) as
0 0 



240 S. Lin et al. / Journal of the Mechanics and Physics of Solids 106 (2017) 229–256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

an example. As show in Fig. 6 a, when α is below a critical value, fringe instability will be more favorable than fingering

instability. In order to identify the boundary between these two instabilities, we plot the location of the initiation of the

instabilities for layers with various aspect ratios α. In the current work, we focus on the case with very small Z̄ 0 (i.e. Z̄ 0 ≤
0 . 3 ). As we can see in Fig. 6 b, when α > 4.9, the initiation of the instability occurs at the middle plane, which is the case

of fingering instability. In contrast, when α < 4.9, the lower critical stretch is identified at Z̄ 0 � = 0 , which is corresponding to

fringe instability. Therefore, the theoretically calculated critical transition between fingering instability and fringe instability

is identified as 4.9, which agrees with the simulation results (i.e. α f ringe − f ingering = 5 ) discussed in Section 4 . 

5.3. Onset of cavitation instability 

Cavitation is the another mode of mechanical instability emerging in elastic layers under tension, as the hydrostatic

pressure in the layer reaches a critical value ( Ball, 1982; Gent, 1990 ). Theoretical explanation of the nucleation and growth

of a cavity within a bulk material has been intensively studied, which was either considered as a process of creation of a new

surface representing fracture ( Long and Hui, 2010 ) or regarded as an elastic instability of a pre-existing cavity undergoing

hydrostatic pressure ( Biwa, 2006; Dollhofer et al., 2004; Lefèvre et al., 2015 ). Here, we take the emergence of cavity as an

elastic instability and adopt the bifurcation theory ( Biwa, 2006 ) to calculate the critical hydrostatic traction on the pre-

existing cavity for the onset of cavitation instability in an incompressible Neo-Hookean solid ( Dollhofer et al., 2004 ). 

For a cavity under uniform hydrostatic traction T , by analyzing the force balance on the spherical shell surrounding the

cavity with outer surface of B � A (see Fig. 7 a), the relation between the applied hydrostatic traction T and the expansion

of the cavity can be expressed as ( Dollhofer et al., 2004 ): 

T 

μ
= 

2 β

λA 

− 2 

λA 

− 1 

2 λ4 
A 

+ 

2 

λR 

+ 

1 

2 λ4 
R 

, (31) 

where λA = 

a 
A 

, β = 

γ
μA 

and λR = ( 1 − f 3 + f 3 λ3 
A 
) 1 / 3 with f = 

B 
A 

comes from the constraints of volume conservation. In this

study, f is set as 10 0 0, which is sufficient large to ensure that the result is independent of B (as B � A ). From this expres-

sion, we can see that the expansion of a cavity highly depends on the dimensionless elastocapillary number β ( Ball, 1982;

Zimberlin and Crosby, 2010; Zimberlin et al., 2007 ). For example, if β < 1, the critical hydrostatic traction T c approaches to

2.5 μ and the cavity grows gradually with the increase of the hydrostatic traction T , which is the common case for rubbers.

However, if β � 1, the applied hydrostatic traction T first increases dramatically with a negligible expansion of the cavity

up to a maximum critical value shown in Fig. 7 b, and thereafter the cavity bifurcates to a stable state suddenly with a large

expansion ratio ( Biwa, 2006; Dollhofer et al., 2004 ). The maximum hydrostatic traction T c determines the critical point for

the onset of cavitation instability. As shown in Fig. 7 c, the effect of surface tension can enhance the critical hydrostatic

traction T c by multiple times, which is common for soft hydrogels with relative high dimensionless capillary number β
( Zimberlin et al., 2007 ). 

When a cylindrical layer is under tension as illustrated in Fig. 7 a, the pre-existing cavity within the layer can be ap-

proximated in the state of uniform hydrostatic stress if the layer’s aspect ratio is relative large (e.g. α > 5) ( Hang-Sheng

and Abeyaratne, 1992; Stringfellow and Abeyaratne, 1989 ). Specifically focusing on the center of the layer with the high-

est chance of emergence of cavitation, when the hydrostatic pressure p 0 reaches the critical hydrostatic traction T c shown

in Fig. 7 c, cavitation instability sets in the layer. To identify the critical applied stress S c or the applied stretch λc for the

onset of cavitation, we recall Eq. (15) and Eq. (17) derived in Section 5.1 and calculate the correlation between the applied

nominal stress S or the applied nominal stretch λ and the hydrostatic pressure at the center of the sample p 0 for various

aspect ratios α in Fig. 7 d and e. In the limiting case of α → ∞ , our theory is reduced to S = 

p 0 
2 , which is consistent with

the reported results ( Fond, 2001 ). We summarize the calculated critical stress S c and the critical stretch λc for the layers

with various aspect ratio α and dimensionless capillary number β shown in Fig. 7 f and g. The critical nominal stress S c for

the onset of cavitation instability weakly dependent on layers’ aspect ratio α while the critical stretch λc decreases dramat-

ically as the increase of layers’ aspect ratio α. For a layer with relatively small aspect ratios (e.g. α < 5), there will be no

cavitation emerging owning to the non-symmetric stress state ( Gent and Lindley, 1959b; Hang-Sheng and Abeyaratne, 1992 )

and therefore only fringe instability sets in with the increase of the applied load. 

To further theoretically calculate the critical transition aspect ratio from fingering to cavitation α f ingering−ca v itation , we plot

the critical applied stress for both fingering instability and cavitation instability with various dimensionless capillary number

β (see Fig. 8 a). The intersections of both curves identify the critical transition aspect ratio from fingering to cavitation

α f ingering−ca v itation for the samples with various β . As shown in Fig. 8 b, the correlation between α f ingering−ca v itation and β can

be fitted simply by a linear relation: 

α f ingering−ca v itation = 1 . 7 β − 2 . 5 , α > 5 . (32) 

6. Evolution of instabilities 

In Section 5 , we use linear perturbation analysis to calculate the critical points for the onset of fringe instability and fin-

gering instability. In this section, we further use simulation and experiment to discuss the evolution of fringe and fingering

instabilities after their onsets and their corresponding applied stress–stretch relations ( S vs. λ). 
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Fig. 7. Theoretical results on the critical points for cavitation instability. a) Schematic of the growth of pre-existing cavity within a cylindrical sample. 

b) Applied hydrostatic traction T / μ on the spherical shell versus the expansion ratio λA of pre-existing cavity for the material with various β . c) Critical 

hydrostatic traction T c / μ for the material with various β . d) Theoretically calculated applied nominal stress S / μ versus hydrostatic pressure p 0 / μ at the 

center of the sample. Dash line denotes the solution from theory with small strain assumption when α → ∞ . e) Theoretically calculated stretch λ versus 

hydrostatic pressure p 0 / μ at the center of the sample. f) Critical applied nominal stress S c / μ for cavitation instability in samples with various α and β . g) 

Critical applied nominal stretch λc / μ for cavitation instability in samples with various α and β . 
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Fig. 8. Theoretical results on the transition between fingering instability and cavitation instability. a) Critical applied nominal stress for fingering stability 

and cavitation instability with various dimensionless capillary number β . b) Theoretical calculation of the critical transition aspect ratio α f ingering−ca v itation . 

Dashed line represents the linear fitting curve from the theoretical calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Monotonic vs. non-monotonic stress–stretch relations 

For the samples with small aspect ratios (e.g. α = 1 ), the middle portion of the layer elongates uniformly and the con-

strained fringe portions deform non-uniformly into a V shape, prior to instability. Since the middle portion of the layer is

almost uniformly elongated under high applied stretches (e.g . λ = 1 . 5 , 2), the driving force for the formation of any insta-

bility in the middle portion of the layer in the sample, is limited. Instead, as the soft elastic layer is further stretched to a

critical point (i.e. λc = 4 . 0 in experiment and λc = 3 . 9 in simulation), the exposed surface of the fringe portions becomes

unstable—beginning to undulate periodically. The applied stress–stretch curves corresponding to fringe instability (e.g. α = 2,

3, 4, 5) are all shown to be monotonic from both experiment and simulation in Fig. 9 c, indicating that fringe instability is a

local instability mode. The critical applied nominal stress for the onset of fringe instability with various aspect ratios is equal

to 3.8 times shear modulus of the layer (see Fig. 9 c and Fig. 11 ), which is consistent with the layers with rectangular shape

( Lin et al., 2016 ). With the increase of aspect ratio of the layer ( α > 5), fingering instability initiates at the middle plane

of the layer. As shown from the experimental and simulation results in Fig. 10 a, the layer with aspect ratio α = 12 deforms

as the meniscus shape at the exposed surface at the stretch of λ = 1 . 1 . As the stretch reaches λc = 1 . 3 , undulation forms

at the exposed surface and the amplitude of the fingers increases gradually with the further increase of the applied load.

Different from fringe instability, the applied nominal stress–stretch curves are shown to be non-monotonic (see Fig. 10 b and

d). In addition, the critical applied stress increases with the increase of aspect ratio α shown in Fig. 11 . 

6.2. Type I fingering vs. Type II fingering 

While the applied stress–stretch relations in samples subjected to fingering instability are non-monotonic, the peak stress

( S p ) can exactly correspond to or slightly fall behind the critical point ( S c ) for the onset of fingering instability. As shown in

Fig. 10 a and b for the sample with moderate aspect ratio α = 12 , the onset of fingering instability is exactly corresponding to

the peak stress, which indicates this type of fingering instability is a global instability mode. In contrast, for the sample with

large aspect ratio (e.g. α = 32 in Fig. 10 c and d), the emergence of fingering instability corresponds to an inflection point in

the applied nominal stress–stretch curve and the stress keeps increasing until the layer reaches the peak stress, manifesting

that this type of fingering instability is a local instability mode. To distinguish the two types of fingering instability, we term

the instability as Type I fingering instability if the onset of the undulations corresponds to the maximum applied nominal

stress; and term the instability as Type II fingering instability if the onset of the undulations deviates from the maximum

applied nominal stress. We further performed cyclic loading for both layers and found that the stress–stretch curves at

first loading and subsequent loading are consistent with each other, which manifests that both types of fingering instability

are reversible and elastic response (see in Fig. 10 b and d). To further visualize the evolution of the two types of fingering

instabilities, we performed the corresponding numerical simulation in Abaqus/Explicit. Fig. 10 a shows the formation of Type

I fingering instability in the layer with α = 12 and Fig. 10 c shows the formation of Type II fingering instability in the layer

with α = 32 . Different from Type I fingering instability, after the initiation of fingering undulations at the lateral surfaces,

the applied nominal stress keeps increasing. 

To further identify the transition between type I fingering instability and type II fingering instability, we measured both

the critical applied nominal stress S c for the onset of instability and the peak stress S p from experimental and simulation

results. As summarized in Fig. 11 , for the samples with moderate aspect ratios (e.g. 5 < α < 20), the critical stress for the

onset of instability exactly corresponds to the peak stress (i.e. S c = S p ); while for the samples with large aspect ratios (e.g. α
> 20), the critical stress for the onset of instability is slightly lower than the peak stress (i.e. S c < S p ). Here, we identify the

critical transition aspect ratio between two types of fingering instability as αT ypeI−T ypeII = 20 from the numerical simulation.
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Fig. 9. Experimental and simulation results on fringe instability. a) Experimental observation and b) corresponding simulations for the formation of fringe 

instability for the sample with α = 1 . The color scale represents the effective true stress distribution in the deformed layer. c) Applied nominal stress versus 

stretch curves from experiments (solid lines) and simulations (dashed line) for the sample with α = 2 , 3 , 4 , 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. A phase diagram for instabilities 

As the applied stretch or stress on the constrained elastic layer reaches a critical value, a mode of mechanical instability

sets in the layer. While the selection of fringe or fingering instability is governed by the geometry of the elastic layer via

α = D/H, the cavitation instability is also affected by material properties and defects of the elastic layer via β = γ /μA .

Therefore, we can predict the occurrence of any mode of instability using a phase diagram with two control parameters:

α = D/H and β = γ /μA . 

In Section 4 and Section 5.2 , we have illustrated the transition from fringe instability to fingering instability as

α f ringe − f ingering = 5 from simulation and α f ringe − f ingering = 4 . 9 from theory. In Section 5.3 , we identify the transition from

fingering instability to cavitation instability as α f ingering−ca v itation = 1 . 7 β − 2 . 5 for the samples with aspect ratios α > 5. In

Section 6 , we identify the transition aspect ratio from Type I fingering instability to Type II as αT ypeI−T ypeII = 20 from nu-

merical calculation. 

With the identified α f ringe − f ingering , α f ingering−ca v itation and αT ypeI−T ypeII . we construct the phase diagram in the plot of

aspect ratio α and dimensionless capillary number β shown in Fig. 12 . The solid lines in Fig. 12 are from theory and simu-

lations. To illustrate the phase diagram, we qualitatively discusses three representative cases for the initial occurrence mode

of the samples with wide range of β . For the sample with small dimensionless capillary number β(e.g. β = 3 . 9 in Fig. 8 a

and Fig. 12 ), fringe instability emerges at the exposed free surfaces of the sample with small aspect ratio (i.e. α < 5). As

the increase of α, cavitation instability within the sample forms prior to the formation of fingering instability. Both Type I

and Type II fingering instabilities are suppressed in this case, which is commonly observed for rubber-like samples. If β is

moderate large (e.g. β = 10 . 1 in Fig. 8 a and Fig. 12 ), the sample exhibits fringe instability if aspect ratio is small (e.g. α < 5),

Type I fingering instability if aspect ratio is moderate large (i.e. 5 < α < 14), and cavitation instability within the sample if

aspect ratio is extremely large (i.e. α > 14). In this case, Type II fingering instability is suppressed. If β is sufficient high (e.g.
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Fig. 10. Experimental and simulation results on fingering instability. a) Experimental observation and corresponding simulations for the formation of 

Type I fingering instability for the sample with α = 12 . b) Applied nominal stress versus stretch curves from experiments and simulations for the sample 

with α = 12 . c) Experimental observation and corresponding simulations for the formation of Type II fingering instability for the sample with α = 32 . d) 

Applied nominal stress versus stretch curves from experiments and simulations for the sample with α = 32 . Here, the bulk modulus in simulation is set 

as K = 200 μ to match well with the experimental results, which means the sample we used is not ideally incompressible. The color scale represents the 

effective true stress distribution in the deformed layer. 

Fig. 11. Experimental and simulation results on the critical stress S c and the peak stress S p to identify the transition between Type I fingering instability 

and Type II fingering instability. When α > 20, the critical stress for the onset of fingering instability deviates from the maximum peak stress, where Type 

II fingering instability sets in. 
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Fig. 12. Phase diagram for the initial occurrence mode of mechanical instabilities. The lines are from theory and simulation, and the dots are from experi- 

ments. Red circular dots denote the occurrence of fringe instability, blue square dots denote the occurrence of Type I fingering instability, green triangular 

dots denote the occurrence of Type II fingering instability and purple pentagon dots denote the occurrence of cavitation instability. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β = 18 . 1 in Fig. 8 a and Fig. 12 ), all modes of mechanical instabilities including fringe instability, Type I fingering instability,

Type II fingering instability and cavitation instability can be observed across a wide range of aspect ratios α. 

The phase diagram is also validated by experiments. We chose materials with six constituents with controlled critical

defect size of A = 1 μm , surface tension γ = 0 . 07 N / m while varying the shear modulus μ (see details in Fig. 2 ). For each

constituent, samples were measured across wide range of aspect ratios to investigate the initial mode of mechanical insta-

bilities. The experimental data matches relatively well compared with the theoretical predication of the phase diagram in

Fig. 12 . 

8. Coexistence and interactions of instabilities 

From our experiments and simulations, we find that cavitation instability can coexist with fingering instability and their

interactions can affect each other. We will discuss two scenarios on coexistence and interactions of cavitation and fingering

instabilities: cavitation instability occurs prior to the formation of fingering instability; fingering instability forms prior to

the nucleation of cavitation instability. 

As shown in Fig. 13 a, we show the evolution of a sample under tension from top view with aspect ratio of α = 20 and

dimensionless capillary number of β ≈ 7 ( γ ≈ 0.07 N/m 

2 , μ ≈ 10 kPa and A ≈ 1 μm ). At small deformation, the applied

nominal stress increases linearly with uniform shrinkage of the sample (see Fig. 13 b). When the applied nominal stress

reaches ∼ 60 kPa, a cavity nucleates suddenly in the sample and more and more cavities nucleates within the sample with

the further increase of load. When the applied nominal stress reaches the maximum stress ∼105 kPa, the exposed meniscus

becomes unstable and form periodic undulated patterns, demonstrating the coexistence of cavitation instability within the

sample and fingering instability at the exposed meniscus. As the sample is further loaded, the growth of fingering tends to

suppress the growth of cavitation within the sample. The coexistence of cavitation instability and fingering instability can

be interpreted as follows. As shown in Fig. 13 c, since the critical applied nominal stress for the onset of cavitation instability

is smaller than that of the initiation of fingering instability, the onset of cavitation instability occurs first, corresponding to

a negligible kink in the applied nominal stress–stretch curve (shown in Fig. 13 b). The further increase of the applied load

can serve as an additional driving force to initiate the fingering instability at the exposed lateral surface. 

Likewise, we demonstrate another example with the sample of aspect ratio α = 28 and dimensionless number of β ≈
35 ( γ ≈ 0.07 N/m 

2 , μ ≈ 2 kPa and A ≈ 1 μm ), in which fingering instability forms first at the exposed surface and a cavity

nucleates within the sample thereafter. As shown in Fig. 13 d and e, when the applied nominal stress reaches ∼ 40 kPa,

the exposed meniscus undulated, showing fingering instability. Thereafter, the amplitude of the fingers increases gradually

and a cavity nucleates within the sample when the applied nominal stress reaches ∼43 kPa. As the further increase of the

applied load, both fingers at the exposed surfaces and the cavity within the sample grow by size gradually. As theoretical

interpretation shown in Fig. 13 f, the critical applied nominal stress for the onset of fingering instability is smaller than

that of the initiation of cavitation instability, fingering instability forms first. Since the fingering instability in this sample

( α = 24 ) is Type II fingering instability, the applied nominal stress keeps increasing and gives a further driving force for the

initiation of the cavitation instability. 
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Fig. 13. Coexistence of cavitation instability and fingering instability. a), b) and c) A cavity forms suddenly within the sample, and then the applied nominal 

stress keeps increasing up to the maximum point which corresponds to the initiation of fingering instability at the exposed surface. The sample has an 

aspect ratio α = 20 (i.e. D = 40 mm and H = 2 mm ) and dimensionless number of β ≈ 7 ( γ ≈ 0.07 N/m 

2 , μ ≈ 10 kPa and A ≈ 1 μm). d), e) and f) Type II 

fingering forms first at the exposed surface and a cavity forms suddenly within the sample with the further increase of the applied nominal stress, which 

exhibits the coexistence of Type II fingering instability and cavitation instability. The sample has an aspect ratio α = 28 (i.e. D = 56 mm and H = 2 mm ) 

and dimensionless number of β ≈ 35 ( γ ≈ 0.07 N/m 

2 , μ ≈ 2 kPa and A ≈ 1 μm). The stretch rate of both experiments is 0.016 s −1 . 

 

 

 

 

 

 

 

 

 

 

9. Concluding remarks 

In this paper, we perform a systematic study on the formation, transition, interaction and co-existence of mechanical

instabilities in confined elastic layers under tension through combined experimental, simulation and theoretical analysis. A

phase diagram is calculated to quantitatively predict the occurrence of any mode of instability. The main conclusions are

summarized as follows: 

• Both fringe instability and fingering instability feature the undulation at the exposed surface. The main differences be-

tween the two instabilities are twofold. First, fringe instability initiates at the fringe portion while fingering instability

forms at exact the middle plane of the layer; the stress–stretch response of the sample with fringe instability is mono-

tonic while that of the sample with fingering instability is non-monotonic. There exists a critical transition aspect ratio

between fringe and cavitation, which we identify as α f ringe − f ingering = 5 from simulation and α f ringe − f ingering = 4 . 9 from 

theory. 

• For fingering instability, the point of the peak stress can exactly correspond to or slightly fall behind the critical point

for the onset of fingering instability, which is corresponding to Type I fingering instability and Type II fingering in-

stability, respectively. We identify the critical transition aspect ratio between Type I fingering and Type II fingering as

αT ypeI−T ypeII = 20 from simulation. 
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• The initial occurrence mode of instability can be tuned by two dimensionless numbers: aspect ratio α and dimensionless

capillary number β . For a material with controlled capillary number β , there exists a critical transition aspect ratio

between fingering instability and cavitation instability, can be approximately identified as α f ingering−ca v itation = 1 . 7 β − 2 . 5 .

• The cavitation instability can coexist with fingering instability and interact with each other. 

The systematic study on various mechanical instabilities in this paper can serve as a foundation on predicting the me-

chanical responses in confined elastic layers and thereafter facilitate to enhance the mechanical performance and prevent

failures or ruptures. In addition to the significance in mechanical design, the tunable mode of mechanical instability can have

the potential to tune the functional responses such as light transmission, electrical conductivity and acoustic transmission

through mechanical stimuli. 
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Appendix A. Detailed Derivation of the Theory in Section 5 

A.1. Large deformation field in cylindrical layer under tension 

We set the center of the sample as the origin point of the coordinate. We assume that the separable form is applicable

to the displacement along radius direction. Therefore, the displacement field can be approximated as a 2D field, namely 

u R ( ̄R , Z̄ ) = R̄ u 1 ( ̄Z ) , (A1)

u Z ( ̄Z ) = u 2 ( ̄Z ) , (A2)

with R̄ = 

R 
D/ 2 , Z̄ = 

Z 
H/ 2 . Applying the displacement fields, we can further express the deformation gradient of the layer

through F = ∇u + 1 as: 

F = 

[ 
λrR 0 γrZ 

0 λθ� 0 

0 0 λzZ 

] 
, (A3)

with λrR = 1 + 

1 
D/ 2 u 1 , λθ� = 1 + 

1 
D/ 2 u 1 , λzZ = 1 + 

1 
H/ 2 

d u 2 
d ̄Z 

and γrZ = 

R̄ 
H/ 2 

d u 1 
d ̄Z 

. The incompressibility of the elastic layer enforces

the conservation of volume, which reads as: 

λrR λθ�λzZ = 1 . (A4)

We further take the elastic layer as an incompressible neo-Hookean material with strain energy density function ψ =
μ
2 [ tr ( F 

T F ) − 3 ] . Therefore, the nominal stress tensor S is expressed through S = μF − p ∗F −T and the Cauchy stress tensor is

expressed through σ = S F T , namely: 

S /μ = 

( 
λrR − p̄ / λrR 0 γrZ 

0 λθ� − p̄ / λθ� 0 

λθ�γrZ p̄ 0 λzZ − p̄ / λzZ 

) 
, (A5a)

σ/μ = 

( 
λ2 

rR − p̄ + γ 2 
rZ 0 γrZ λzZ 

0 λ2 
θ�

− p̄ 0 

γrZ λzZ 0 λ2 
zZ − p̄ 

) 
, (A5b)

where p ∗ is the Lagrange Multiplier to enforce the incompressibility and p̄ = p ∗/μ is the corresponding dimensionless form.

The equilibrium equation reads Div S = 0 . Since the equilibrium equation along hoop direction will be satisfied automatically,

then the equations along radius direction and axial direction are 

− 1 

λrR 

∂ p̄ 

∂ R̄ 

+ α
∂ γrZ 

∂ ̄Z 
= 0 , (A6)

λrR 
∂ ( γrZ p̄ ) 

∂ R̄ 

+ 

λrR γrZ p̄ 

R̄ 

+ α
∂ ( λzZ − p̄ / λzZ ) 

∂ ̄Z 
= 0 , (A7)

with α = D/H. Since the highest order of R̄ in γ rZ is first order and in order to satisfy the equilibrium equation Eq. (A6) , p̄

is a function of R̄ 2 and should be in the form as: 

p̄ 
(
R̄ , Z̄ 
)

= q 0 
(
Z̄ 
)

+ 

(
R̄ 

2 − 1 

)
q 1 
(
Z̄ 
)
. (A8)

http://dx.doi.org/10.13039/100000006
http://dx.doi.org/10.13039/100000001
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By inserting Eq. (A8) into Eq. (A6) and using the relation of λrR and γ rZ in Eq. (A3) , we can attain an ODE with respect

to Z̄ , reading as: 

α2 λ′′ 
rR = 

2 q 1 
λrR 

. (A9) 

By inserting Eq. (A8) into Eq. (A7) and using the incompressibility constraint Eq. (A4) , we can attain another ODE: 

λrR 

(
2 λ′ 

rR q 1 − λrR q 
′ 
1 

)
R̄ 

2 + 

[
λ′ 

zZ − λ2 
rR 

(
q ′ 0 − q ′ 1 

)]
= 0 . (A10) 

In order to satisfy Eq. (A10) for all the value of R̄ ∈ [ 0 , 1 ] , we can further attain the following two ODEs: 

2 q 1 λ
′ 
rR = λrR q 

′ 
1 , (A11) 

λ′ 
zZ = λ2 

rR ( q 
′ 
0 − q ′ 1 ) . (A12) 

The combination of Eq. (A9) and Eq. (A11) results in one governing equation with respect to λrR , reading as: 

λ′′ 
rR = ±κ2 λrR , (A13) 

with q 1 = ± 1 
2 κ

2 α2 λ2 
rR 

, which is corresponding to two cases: 

a) For case λ′′ 
rR 

= −κ2 λrR , the general solution of Eq. (A13) is λrR = C 1 cos (κZ ) + C 2 sin (κZ ) where C 1 and C 2 are two con-

stants to be determined by boundary conditions. By imposing the boundary conditions: d u 1 / d ̄Z | Z̄ =0 = 0 , u 1 ( ̄Z = ±1) = 0 ,

the specific function u 1 ( ̄Z ) can be identified as: 

u 1 ( ̄Z ) = 

D 

2 

(
cos (κ Z̄ ) 

cos (κ) 
− 1 

)
. (A14a) 

Further combining the condition of volume conservation in Eq. (A4) and boundary condition of u 2 ( ̄Z = 0) = 0 , the specific

function u 2 ( ̄Z ) can be calculated through u 2 = 

H 
2 

∫ Z 
0 ( 

cos 2 κ
cos 2 (κξ ) 

− 1) dξ , namely, 

u 2 ( ̄Z ) = 

H 

2 

(
sin (2 κ) 

2 κ

tan (κ Z̄ ) 

tan (κ) 
− Z̄ 

)
. (A15a) 

The deformation field in constrained elastic layer under tension can be fully specified by functions u 1 ( ̄Z ) and u 2 ( ̄Z ) ,

expressed in Eq. (A1 4a) and Eq. (A1 5a), where κ is an internal loading parameter which is correlated with the applied

stretch by λ = 

u 2 ( Z =1) 
H/ 2 + 1 , namely, λ = 

sin (2 κ) 
2 κ . For any κ ∈ [0, π /2), we have 0 < λ ≤ 1 for this case, which is corre-

sponding to compression. 

b) For case λ′′ 
rR 

= κ2 λrR , the general solution of Eq. (A13) is λrR = C 1 cosh (κZ ) + C 2 sinh (κZ ) , where C 1 and C 2 are two con-

stants to be determined by boundary conditions. By imposing the boundary conditions: d u 1 / d ̄Z | Z̄ =0 = 0 , u 1 ( ̄Z = ±1) = 0 ,

the specific function u 1 ( ̄Z ) can be identified as: 

u 1 ( ̄Z ) = 

D 

2 

(
cosh (κ Z̄ ) 

cosh (κ) 
− 1 

)
. (A14b) 

Further combining the condition of volume conservation in Eq. (A4) and boundary condition of u 2 ( ̄Z = 0) = 0 , the specific

function u 2 ( ̄Z ) can be calculated through u 2 = 

H 
2 

∫ Z 
0 ( 

cosh 2 κ

cosh 2 (κξ ) 
− 1) dξ , namely, 

u 2 ( ̄Z ) = 

H 

2 

(
sinh (2 κ) 

2 κ

tanh (κ Z̄ ) 

tanh (κ) 
− Z̄ 

)
. (A15b) 

The deformation field in constrained elastic layer under tension can be fully specified by functions u 1 ( ̄Z ) and u 2 ( ̄Z ) ,

expressed in Eq. (A14b) and Eq. (A15b) , where κ is an internal loading parameter which is correlated with the applied

stretch by λ = 

u 2 ( Z =1) 
H/ 2 + 1 , namely, λ = 

sinh (2 κ) 
2 κ . For any κ ≥ 0, we have λ ≥ 1 for this case, which is corresponding to

tension. 

Since we are mainly interested in the tension case in this paper, we proceed using the conclusions in case (b). 

To identify the dimensionless scalar pressure p̄ , we further attain the expression of q 0 ( ̄Z ) from the integration of

Eq. (A12) , reading as: 

q 0 = 

α2 

2 

κ2 λ2 
rR + 

1 

2 λ4 
rR 

+ C 3 , (A16) 

with C 3 being a constant determined by the boundary condition of free traction at Z̄ = Z̄ 0 . Owning to the assumption that

any horizontal plane in the layer at the un-deformed state remains planar upon deformation, it’s impossible to satisfy the

traction free boundary conditions at all Z̄ . Here, we enforce the boundary condition at Z̄ = 0 , namely the traction t = S · e ,
R R 
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Fig. A.1. The theoretically calculated stress contains two parts: one is monotonic S 0 in a) and the other is non-monotonic S 1 in b). 
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shall be zero at R̄ = 1 . The � component of the traction is zero automatically and Z components of traction also be zero

owing to the symmetric condition of γrZ = 0 at the middle plane, and the R component reads μ( λrR − p̄ / λrR ) . Therefore,

constant C 3 can be identified as 1 

cosh 2 κ
( 1 − 1 

2 κ
2 α2 ) − 1 

2 cosh 

4 κ and the dimensionless scalar pressure reads as 

p̄ = 

1 

2 

( 
cosh 

4 κ

cosh 

4 
(
κ Z̄ 
) − cosh 

4 κ

) 
+ 

α2 κ2 

2 

( 
R 

2 cosh 

2 
(
κ Z̄ 
)

cosh 

2 κ
− 1 

cosh 

2 κ

) 
+ 

1 

cosh 

2 κ
. (A17)

We further define the averaged nominal stress applied on the layer S as the applied force divided by the un-deformed

horizontal cross-section area π
4 D 

2 , which can be calculated as 

S = 

4 

HπD 

2 
· dW 

dλ
= 

d ˜ W 

dλ
, (A18)

where W is the total elastic energy of the layer which can be calculated by integrating ψ over the volume of the layer:

 = 2 
∫ H 

2 
0 

∫ D 
2 

0 
2 πRψ(R, Z) dR dZ. Let ˜ W = 

4 
HπD 2 

W = 

∫ 1 
0 

∫ 1 
0 2 ̄R ψ( ̄R , ̄Z ) d ̄R d ̄Z , by inserting the free energy ψ = 

μ
2 [ tr ( F F 

T ) − 3 ] , we

can attain: 

˜ W = 

μ

2 

·
∫ 1 

0 

∫ 1 

0 

2 R 

(
λ2 

rR + λ2 
θ� + λ2 

zZ + γ 2 
rZ − 3 

)
d ̄R d ̄Z , (A19)

with λrR = λθ� = 

cosh (κ Z̄ ) 
cosh κ

, λzZ = 

cosh 2 κ

cosh 2 (κ Z̄ ) 
and γrZ = 

ακ
cosh κ

sinh (κ Z̄ ) ̄R . By integral ˜ W over R , ˜ W can be reduced as: 

˜ W = 

μ

2 

·
∫ 1 

0 

[
2 

cosh 

2 
(κ Z̄ ) 

cosh 

2 κ
+ 

cosh 

4 κ

cosh 

4 
(κ Z̄ ) 

+ 

1 

2 

κ2 α2 

cosh 

2 κ
sinh 

2 
(κ Z̄ ) − 3 

]
d Z . (A20)

By integral ˜ W over Z , ˜ W can be reduced as a function with respect to a single variable κ: 

˜ W = 

μ

2 

·
[

sinh κ cosh κ + κ

κcosh 

2 κ
+ 

sinh κ cosh κ

3 κ
+ 

2 sinh κcosh 

3 κ

3 κ
+ α2 κ sinh κ cosh κ − κ2 

4 cosh 

2 κ
− 3 

]
. (A21)

Combination of the Eq. (A18), Eq. (A21) and λ = 

sinh (2 κ) 
2 κ gives rise to the expression of the applied nominal stress as: 

S/μ = S 0 + α2 S 1 , (A22)

where both S 0 and S 1 are functions with respect to a single variable of loading parameter κ as: 

S 0 = (6 κ2 sinh κ + 3 cosh 

2 κ sinh κ + cosh 

4 κ sinh κ + 2 cosh 

6 κ sinh κ − 3 κ cosh κ

+ κcosh 

3 κ + 4 κcosh 

5 κ − 8 κcosh 

7 κ) / 
[
6 cosh 

4 κ sinh κ − 6 κcosh 

3 κ cosh ( 2 κ) 
]
, (A23)

S 1 = 

(
κ3 cosh κ − 2 κ4 sinh κ − κ2 cosh 

2 κ sinh κ
)
/ 
[
8 cosh 

4 κ sinh κ − 8 κcosh 

3 κ cosh ( 2 κ) 
]

(A24)

As shown in Fig. A.1 , S 0 monotonically increases with the applied stretch while S 1 is non-monotonic with a peak point

at κ = 0 . 89 (i.e. λ = 1 . 62 ). 

In addition to the applied stretch λ and the applied nominal stress S we derived, the hydrostatic pressure at the center

of the sample can be calculated through p 0 = 

1 
3 tr (σ) | 

Z =0 , R =0 
with σ = S F T being Cauchy stress tensor. Based on Eq. (A5b) ,

the hydrostatic pressure reads as: 

p 0 /μ = 

λ2 
rR + λ2 

θ�
+ λ2 

zZ + γ 2 
rZ − p̄ . (A25)
3 
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Fig. A.2. a) Comparison of 1 
μ

ds 
dλ

| λ=1 between our result and previous result with the assumption of small deformation. b) Comparison of 1 
μ

d p 0 
dλ

| λ=1 between 

our result and existing result with the assumption of small deformation. 

Fig. A.3. a) Undulation contour from simulation at the locus Z̄ 0 = 0 right after fingering instability for the sample with α = 8 . b) Undulation contour from 

simulation at the locus Z̄ 0 = 0 . 81 right after fringe instability for the sample with α = 4 . 

 

 

Inserting λrR ( ̄Z = 0) = λθ�( ̄Z = 0) = 

1 
cosh κ

, λzZ ( ̄Z = 0) = cosh 

2 κ , γrZ ( ̄R = 0 , ̄Z = 0 ) = 0 and p̄ ( ̄R = 0 , ̄Z = 0 ) = 

1 

cosh 2 κ
−

κ2 α2 

2 cosh 2 κ
, one can write the hydrostatic pressure at the center of the sample as 

p 0 /μ = 

cosh 

4 
(κ) 

3 

− 1 

3 cosh 

2 
(κ) 

+ 

κ2 α2 

2 cosh 

2 
(κ) 

. (A26) 

A.2. Detailed derivation of the onset of instabilities via linear perturbation analysis 

To identify the onset of fingering instability and estimating the boundary between fingering and fringe instability, we

applied an infinitesimal oscillatory part to the rotational invariant part at base state solved in Section 6.1 . The perturbed

deformation fields read as: 

x = ( x ) 
0 + ε ̃  x , (A27) 

p̄ = ( ̄p ) 
0 + ε ̃  p , (A28) 

where the rotational invariant part is solved in Appendix. A.1 , reading as: 

( x ) 
0 = 

D ̄R 

2 

(
cosh (κ Z̄ ) 

cosh (κ) 
− 1 

)
e R + 

H 

2 

(
sinh (2 κ) 

2 κ

tanh (κ Z̄ ) 

tanh (κ) 
− Z̄ 

)
e Z , (A29) 

( ̄p ) 
0 = 

1 

2 

( 
cosh 

4 κ

cosh 

4 
(
κ Z̄ 
) − cosh 

4 κ

) 
+ 

κ2 α2 

2 

( 
R̄ 

2 
cosh 

2 
(
κ Z̄ 
)

cosh 

2 κ
− 1 

cosh 

2 κ

) 
+ 

1 

cosh 

2 κ
. (A30) 
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Both the perturbed displacement field and the perturbed Lagrange multiplier read as 

˜ x = A 1 (R ) u 1 (Z) cos ( ω�) e R + A 2 (R ) u 1 (Z) sin ( ω�) e � + A 3 (R ) u 2 (Z) sin ( ω�) e Z , (A31)

˜ p = A 4 (Z, R ) cos (ω�) , (A32)

where A i ( i = 1 , 2 , 3 , 4 ) are the amplitudes of perturbation. Therefore, the full deformation gradient may write as F = (F ) 0 +
ε Grad ̃ x , where ( F ) 0 is the rotational invariant deformation gradient at base state expressed in Eq. (A3) . By inserting the

displacement field, the deformation gradient reads as: 

F = 

⎡ 
⎣ λrR + ε A 

′ 
1 u 1 cos (ω�) −ε A 1 ω+ A 2 

R 
u 1 sin (ω�) γrZ + ε A 1 u 

′ 
1 cos (ω�) 

ε A 

′ 
2 u 1 sin (ω�) λθ� + ε A 2 ω+ A 1 

R 
u 1 cos (ω�) ε A 2 u 

′ 
1 sin (ω�) 

ε A 

′ 
3 u 2 cos (ω�) −ε A 3 ω 

R 
u 2 sin (ω�) λzZ + ε A 3 u 

′ 
2 cos (ω�) 

⎤ 
⎦ . (A33)

Here the prime is for differentiating to R and Z . The incompressibility of the elastic layer is enforced by det F = 1 , implying

till first order of ɛ : 

λrR λθ�λzZ + ε 

(
λθ�λzZ A 

′ 
1 u 1 + λrR λzZ 

A 2 ω + A 1 

R 

u 1 − λθ�γrZ A 

′ 
3 u 2 + λrR λθ�A 3 u 

′ 
2 

)
cos ( ω�) = 1 . (A34)

By further using the conclusion from the case without perturbation we have λrR λθ�λzZ = 1 and λrR = λθ�, Eq. (A34) can

be further reduced as: 

λzZ A 

′ 
1 u 1 + λzZ 

A 2 ω + A 1 

R 

u 1 − γrZ A 

′ 
3 u 2 + λrR A 3 u 

′ 
2 = 0 . (A35)

The perturbation in deformation gradient will further induce a perturbation in nominal stress which results in the nom-

inal stress reading as S /μ = (S ) 0 /μ + ε ̃ S . The rotational invariant nominal stress (S ) 0 /μ = (F ) 0 − ( ̄p ) 0 (F ) 0 
−T 

at base state is

shown in Eq. (A7) . The total stress can be calculated by inserting Eq. (A31) through S /μ = F − p̄ F −T . Therefore, the perturbed

stress can be calculated as: 

˜ S = Grad ̃  x + 

1 

ε 

[
( ̄p ) 

0 
( F ) 

0 −T − p̄ F −T 
]
. (A36)

Or alternatively, ˜ S = Grad ̃ x + ( ̄p ) 0 (F ) 0 −T ( Grad ̃ x ) −T (F ) 0 −T − ˜ p (F ) 0 −T . By inserting Eq. (A3), Eq. (A33), Eq. (A35) and Eq. (A36) ,

each component of the perturbed nominal stress reads as: 

˜ S rR = 

[
A 

′ 
1 u 1 − ( ̄p ) 

0 
(
γrZ A 

′ 
3 u 2 − λzZ A 

′ 
1 u 1 

)
− A 4 

λrR 

]
cos ( ω�) , (A37a)

˜ S r� = 

[
−A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 λzZ A 

′ 
2 u 1 

]
sin ( ω�) , (A37b)

˜ S rZ = 

[
A 1 u 

′ 
1 + ( ̄p ) 

0 λrR A 

′ 
3 u 2 

]
cos ( ω�) , (A37c)

˜ S θR = 

[
A 

′ 
2 u 1 − ( ̄p ) 

0 λzZ 
A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 γrZ 

A 3 ω 

R 

u 2 

]
sin ( ω�) , (A37d)

˜ S θ� = 

[
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 − ( ̄p ) 

0 
(
λzZ A 

′ 
1 u 1 − γrZ A 

′ 
3 u 2 + λrR A 3 u 

′ 
2 

)
− A 4 

λrR 

]
cos ( ω�) , (A37e)

˜ S θZ = 

[
A 2 u 

′ 
1 − ( ̄p ) 

0 λrR 
A 3 ω 

R 

u 2 

]
sin ( ω�) , (A37f)

˜ S zR = 

[
A 

′ 
3 u 2 + λrR γrZ A 4 + ( ̄p ) 

0 γrZ 

(
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 

)
+ ( ̄p ) 

0 λrR A 1 u 

′ 
1 

]
cos ( ω�) , (A37g)

˜ S z� = 

[
−A 3 ω 

R 

u 2 − ( ̄p ) 
0 γrZ A 

′ 
2 u 1 + ( ̄p ) 

0 λrR A 2 u 

′ 
1 

]
sin ( ω�) , (A37h)

˜ S zZ = 

[
A 3 u 

′ 
2 − λ2 

rR A 4 − ( ̄p ) 
0 λrR u 1 

(
A 

′ 
1 + 

A 2 ω + A 1 

R 

)]
cos ( ω�) . (A37i)

A balance of the forces exerted on an element of the perturbed elastomer further leads to three equations of equilibrium

through Div ̃  S = 0 . The three equilibrium equations read: {
A 

′′ 
1 u 1 + 

[
∂ R ( ̄p ) 

0 
](

λzZ A 

′ 
1 u 1 − γrZ A 

′ 
3 u 2 

)
+ ( ̄p ) 

0 
[
λzZ A 

′′ u 1 − ( ∂ R γrZ ) A 

′ 
3 u 2 − γrZ A 

′′ 
3 u 2 

]
− ( ∂ R A 4 ) / λrR 

}
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+ 

ω 

R 

[
−A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 λzZ A 

′ 
2 u 1 

]
+ A 1 u 

′′ 
1 + 

(
∂ Z ( ̄p ) 

0 
)
λrR A 

′ 
3 u 2 + ( ̄p ) 

0 λ′ 
rR A 

′ 
3 u 2 + ( ̄p ) 

0 λrR A 

′ 
3 u 

′ 
2 

+ 

1 

R 

[
2 A 

′ 
1 u 1 + λ3 

rR A 3 u 

′ 
2 − λ2 

rR γrZ A 

′ 
3 u 2 + ( ̄p ) 

0 
(
2 λzZ A 

′ 
1 u 1 − 2 γrZ A 

′ 
3 u 2 + λrR A 3 u 

′ 
2 

)]
= 0 , (A38) 

A 

′′ 
2 u 1 −
[
∂ R ( ̄p ) 

0 
]
λzZ 

A 1 ω + A 2 

R 

u 1 − ( ̄p ) 
0 λzZ 

(
A 1 ω + A 2 

R 

)′ 
u 1 + ∂ R ( ̄p ) 

0 γrZ 
A 3 ω 

R 

u 2 + ( ̄p ) 
0 ∂ R γrZ 

A 3 ω 

R 

u 2 

+ ( ̄p ) 
0 γrZ 

(
A 3 ω 

R 

)′ 
u 2 − ω 

R 

[
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 − ( ̄p ) 

0 
(
λzZ A 

′ 
1 u 1 − γrZ A 

′ 
3 u 2 + λrR A 3 u 

′ 
2 

)
− A 4 

λrR 

]

−
[
∂ Z ( ̄p ) 

0 
]
λrR 

A 3 ω 

R 

u 2 − ( ̄p ) 
0 λ′ 

rR 

A 3 ω 

R 

u 2 − ( ̄p ) 
0 λrR 

A 3 ω 

R 

u 

′ 
2 + A 2 u 

′′ 
1 

+ 

1 

R 

[
A 

′ 
2 u 1 − ( ̄p ) 

0 λzZ 
A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 γrZ 

A 3 ω 

R 

u 2 − A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 λzZ A 

′ 
2 u 1 

]
= 0 , (A39) 

A 

′′ 
3 u 2 + λR ( ∂ R γrZ ) A 4 + λrR γrZ ( ∂ R A 4 ) + 

[
∂ R ( ̄p ) 

0 
](

λ2 
rR γ

2 
rZ A 

′ 
3 u 2 − λ3 

rR γrZ A 3 u 

′ 
2 − γrZ A 

′ 
1 u 1 

)
+ ( ̄p ) 

0 
[
2 λ2 

rR γrZ ( ∂ R γrZ ) A 

′ 
3 u 2 + λ2 

rR γ
2 

rZ A 

′′ 
3 u 2 − λ3 

rR ( ∂ R γrZ ) A 3 u 

′ 
2 − λ3 

rR γrZ A 

′ 
3 u 

′ 
2 − ( ∂ R γrZ ) A 

′ 
1 u 1 − γrZ A 

′′ 
1 u 1 

]
+ 

[
∂ R ( ̄p ) 

0 
]
λrR A 1 u 

′ 
1 + ( ̄p ) 

0 λrR A 

′ 
1 u 

′ 
1 + 

ω 

R 

[
−A 3 ω 

R 

u 2 − ( ̄p ) 
0 γrZ A 

′ 
2 u 1 + ( ̄p ) 

0 λrR A 2 u 

′ 
1 

]

+ 

1 

R 

[
A 

′ 
3 u 2 + λrR γrZ A 4 + ( ̄p ) 

0 γrZ 

(
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 

)
+ ( ̄p ) 

0 λrR A 1 u 

′ 
1 

]
+ A 3 u 

′′ 
2 − 2 λrR λ

′ 
rR A 4 − λ2 

rR ( ∂ Z A 4 ) −
[
∂ Z ( ̄p ) 

0 
]
λrR u 1 

(
A 

′ 
1 + 

A 2 ω + A 1 

R 

)

( ̄p ) 
0 λ′ 

rR 

(
A 

′ 
1 + 

A 2 ω + A 1 

R 

)
u 1 − ( ̄p ) 

0 λrR 

(
A 

′ 
1 + 

A 2 ω + A 1 

R 

)
u 

′ 
1 = 0 , (A40) 

with λrR = 1 + 

2 
D u 1 , λθ� = 1 + 

2 
D u 1 and γrZ = 

2 ̄R 
H 

d u 1 
d ̄Z 

, we can attain γrZ = λ′ 
rR 

R = λ′ 
θ�

R . Taking differentiation of the incom-

pressibility condition in Eq. (A35) , we can further attain: 

λzZ A 

′′ 
1 u 1 + λzZ 

(
A 2 ω + A 1 

R 

)′ 
u 1 − λrR A 

′ 
3 u 2 − γrZ A 

′′ 
3 u 2 + λrR A 

′ 
3 u 

′ 
2 = 0 , (A41) 

By imposing Eq. (A35) and Eq. (A41) , all terms with ( ̄p ) 0 in the three equilibrium equations will vanish. Thus, the three

equilibrium equations can be simplified as: {
A 

′′ 
1 u 1 + 

[
∂ R ( ̄p ) 

0 
](

λzZ A 

′ 
1 u 1 − γrZ A 

′ 
1 u 2 

)}
− ω 

2 − 1 

R 

2 
A 1 u 1 + A 1 u 

′′ 
1 + 

[
∂ Z ( ̄p ) 

0 
]
λrR A 

′ 
3 u 2 

+ 

1 

R 

(
3 A 

′ 
1 u 1 + 2 λ3 

rR A 3 u 

′ 
2 − 2 λ2 

rR γrZ A 

′ 
3 u 2 

)
= ( ∂ R A 4 ) / λrR , (A42) 

{
A 

′′ 
2 u 1 −
[
∂ R ( ̄p ) 

0 
]
λzZ 

A 1 ω + A 2 

R 

u 1 + 

[
∂ R ( ̄p ) 

0 
]
γrZ 

A 3 ω 

R 

u 2 

}
− ω 

R 

[
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 − A 4 

λrR 

]

−
[
∂ Z ( ̄p ) 

0 
]
λrR 

A 3 ω 

R 

u 2 + A 2 u 

′′ 
1 + 

1 

R 

[
A 

′ 
2 u 1 − A 1 ω + A 2 

R 

u 1 

]
= 0 , (A43) 

A 

′′ 
3 u 2 + λrR γrZ ( ∂ R A 4 ) + 

[
∂ R ( ̄p ) 

0 
](

λ2 
rR γ

2 
rZ A 

′ 
3 u 2 − λ3 

rR γrZ A 3 u 

′ 
2 − γrZ A 

′ 
1 u 1 + λrR A 1 u 

′ 
1 

)
+ 

ω 

R 

(
−A 3 ω 

R 

u 2 

)

+ 

A 

′ 
3 u 2 

R 

+ 

[
A 3 u 

′′ 
2 − λ2 

rR ( ∂ Z A 4 ) − ∂ Z ( ̄p ) 
0 λrR 

(
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 

)]
= 0 . (A44) 

Noting that all the three equilibrium equations are only required to be satisfied at Z̄ = Z̄ 0 , where the instability initiates.

For the other cross sections where Z̄ � = Z̄ 0 , the force balance can be satisfied automatically with ε = 0 . 

For the case when fingering instability initiates, the location of the undulation is at the center plane of the sample (i.e.

Z̄ 0 = 0 ). Consequently, all the terms associated with λ′ 
rR 

, u ′ 
1 

and u ′′ 
2 

vanish due to the symmetric condition (e.g. γrZ = 0 ,

∂ Z ( ̄p ) 
0 

Z̄ = ̄Z 0 = 0 ). The first and third equilibrium equations can be further simplified as: 

{
A 

′′ 
1 u 1 + 

[
∂ R ( ̄p ) 

0 
]
λzZ A 

′ 
1 u 1 

}
− ω 

2 − 1 

R 

2 
A 1 u 1 + A 1 u 

′′ 
1 + 

1 

R 

(
3 A 

′ 
1 u 1 + 2 λ3 

rR A 3 u 

′ 
2 

)
= ( ∂ R A 4 ) / λrR , (A45) 
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A 

′′ 
3 u 2 − A 3 ω 

2 

R 

2 
u 2 + 

A 

′ 
3 u 2 

R 

= λ2 
rR ∂ Z A 4 . (A46)

For the second equilibrium equation Eq. (A43) , it can be further rearranged as: 

−λrR 

ω 

{
R A 

′′ 
2 u 1 −
[
∂ R ( ̄p ) 

0 
]
λzZ ( A 1 ω + A 2 ) u 1 + 

[
∂ R ( ̄p ) 

0 
]
γrZ A 3 ω u 2 

}
+ 

[
λ3 

rR γrZ A 

′ 
3 u 2 − λ4 

rR A 3 u 

′ 
2 − λrR A 

′ 
1 u 1 

]
+ 

[
∂ Z ( ̄p ) 

0 
]
λ2 

rR A 3 u 2 − R λrR 

ω 

A 2 u 

′′ 
1 −

λrR 

ω 

[
A 

′ 
2 u 1 − A 1 ω + A 2 

R 

u 1 

]
= A 4 (A47)

By taking differentiation of Eq. (A47) with respect to R and neglecting any terms associated with λ′ 
rR , we will attain: 

−λrR 

ω 

{
A 

′′ 
2 u 1 + RA 

(3) 
2 

u 1 −
[
∂ 2 R ( ̄p ) 

0 
]
λzZ ( A 1 ω + A 2 ) u 1 −

[
∂ R ( ̄p ) 

0 
]
λzZ 

(
A 

′ 
1 ω + A 

′ 
2 

)
u 1 

}
− λ4 

rR A 

′ 
3 u 

′ 
2 − λrR A 

′′ 
1 u 1 

−λrR 

ω 

A 2 u 

′′ 
1 −

R λrR 

ω 

A 

′ 
2 u 

′′ 
1 −

λrR 

ω 

[
A 

′′ 
2 u 1 −

A 

′ 
1 ω + A 

′ 
2 

R 

u 1 + 

A 1 ω + A 2 

R 

2 
u 1 

]
= ∂ R A 4 (A48)

By taking differentiation of Eq. (A47) with respect to Z and neglecting any terms associated with λ′ 
rR , we will attain: 

λ3 
rR λ

′′ 
rR R A 

′ 
3 u 2 + 

[
∂ 2 Z p̄ 0 
]
λ2 

rR A 3 u 2 = ∂ Z A 4 . (A49)

The combination of Eq. (A46) and Eq. (A49) results in the second order ODE with respect to A 3 , namely 

λ3 
rR λ

′′ 
rR R A 

′ 
3 u 2 + 

[
∂ 2 Z p̄ 0 
]
λ2 

rR A 3 u 2 = λzZ A 

′′ 
3 u 2 + 

λzZ 

R 

A 

′ 
3 u 2 − λzZ 

ω 

2 

R 

2 
A 3 u 2 . (A50)

This equation contains two solutions: one is decay solution and the other diverges as R̄ → 0 . By applying the boundary

condition that A 

′ 
3 (1) = 0 , then the solution for A 3 shall be zero. However, for fringe instability, if αis slightly smaller than

the theoretical transition aspect ratio α f ringe − f ingering between fingering instability and fringe instability, A 3 	 A 1 and A 3 	
A 2 , therefore we approximate A 3 = 0 . 

By vanishing the term associated with A 3 , Eq. (A45) and Eq. (A48) can be further simplified as: 

A 

′′ 
1 u 1 + 

[
∂ R ( ̄p ) 

0 
]
λzZ A 

′ 
1 u 1 − ω 

2 − 1 

R 

2 
A 1 u 1 + A 1 u 

′′ 
1 + 

3 A 

′ 
1 u 1 

R 

= 

∂ R A 4 

λrR 

, (A51)

− 1 

ω 

{
A 

′′ 
2 u 1 + RA 

(3) 
2 

u 1 −
[
∂ 2 R ( ̄p ) 

0 
]
λzZ ( A 1 ω + A 2 ) u 1 −

[
∂ R ( ̄p ) 

0 
]
λzZ 

(
A 

′ 
1 ω + A 

′ 
2 

)
u 1 

}
− A 

′′ 
1 u 1 

− 1 

ω 

A 2 u 

′′ 
1 −

R 

ω 

A 

′ 
2 u 

′′ 
1 −

1 

ω 

[
A 

′′ 
2 u 1 −

A 

′ 
1 ω + A 

′ 
2 

R 

u 1 + 

A 1 ω + A 2 

R 

2 
u 1 

]
= 

∂ R A 4 

λrR 

. (A52)

Recalling the condition of incompressibility in Eq. (A35) and neglecting the terms associated with λ′ 
rR 

and A 3 , we can

attain a set of differential equations as follow: 

A 2 ω = −
(
R A 

′ 
1 + A 1 

)
, (A53a)

A 

′ 
2 ω = −

(
2 A 

′ 
1 + R A 

′′ 
1 

)
, (A53b)

A 

′′ 
2 ω = −

(
3 A 

′′ 
1 + RA 

(3) 
1 

)
, (A53c)

A 

(3) 
2 

ω = −
(
4 A 

(3) 
1 

+ RA 

(4) 
1 

)
. (A53d)

The combination of Eq. (A51), Eq. (A52) and Eq. (A53) results in the fourth order ODE with respect to A 1 , namely, 

R 

4 A 

(4) 
1 

+ 6 R 

3 A 

(3) 
1 

+ 

{
5 −
[
∂ R ( ̄p ) 

0 
]
λzZ R + R 

2 u 

′′ 
1 / u 1 − 2 ω 

2 
}

R 

2 A 

′′ 
1 

−
{[

∂ 2 R ( ̄p ) 
0 
]
λzZ R 

2 + 2 

[
∂ R ( ̄p ) 

0 
]
R λzZ + 1 − 3 R 

2 u 

′′ 
1 / u 1 + 2 ω 

2 
}

R A 

′ 
1 

−
{

R 

2 
[
∂ 2 R ( ̄p ) 

0 
]
λzZ − 1 − R 

2 u 

′′ 
1 / u 1 − ω 

2 
(
ω 

2 − 2 

)
+ R 

2 ω 

2 u 

′′ 
1 / u 1 − R 

2 
[
∂ 2 R ( ̄p ) 

0 
]
λzZ ω 

2 
}

A 1 = 0 , (A54)

The corresponding dimensionless form reads as: 

R̄ 

4 A 

(4) 
1 

+ 6 ̄R 

3 A 

(3) 
1 

+ 

{
5 −
[
∂ R̄ ( ̄p ) 

0 
]
λzZ ̄R + R̄ 

2 
(
α2 u 

′′ 
1 / u 1 

)
− 2 ω 

2 
}

R̄ 

2 A 

′′ 
1 

−
{[

∂ 2 
R̄ 
( ̄p ) 

0 
]
λzZ ̄R 

2 + 2 

[
∂ R̄ ( ̄p ) 

0 
]
R̄ λzZ + 1 − 3 ̄R 

2 
(
α2 u 

′′ 
1 / u 1 

)
+ 2 ω 

2 
}

R̄ A 

′ 
1 

−
{

R̄ 

2 
[
∂ 2 ¯ ( ̄p ) 

0 
]
λzZ − 1 − ω 

4 + 2 ω 

2 + R̄ 

2 
(
ω 

2 − 1 

)(
α2 u 

′′ 
1 / u 1 

)
− R̄ 

2 
[
∂ 2 ¯ ( ̄p ) 

0 
]
λzZ ω 

2 
}

A 1 = 0 (A55)

R R 
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It should be noted that the differentiations in Eq. (A55) is respecting to R̄ or Z . From Eq. (A14) and Eq. (A17) in the theory

of deformation field, we attain the following relations: [ ∂ R̄ ( ̄p ) 
0 
] λzZ = R̄ κ2 α2 , [ ∂ 2 

R̄ 
( ̄p ) 0 ] λzZ = κ2 α2 and α2 u ′′ 

1 
/ u 1 = −κ2 α2 λrR 

1 −λrR 
.

Therefore, Eq. (A55) can be further simplified as: 

R̄ 

4 A 

(4) 
1 

+ 6 ̄R 

3 A 

(3) 
1 

+ 

(
5 − 2 ω 

2 
)
R̄ 

2 A 

′′ 
1 −
(
2 ω 

2 + 1 

)
R̄ A 

′ 
1 + 

(
ω 

2 − 1 

)2 
A 1 

−A 

2 
h 
R̄ 

2 
[
R̄ 

2 A 

′′ 
1 + 3 ̄R A 

′ 
1 −
(
ω 

2 − 1 

)
A 1 

]
= 0 , 

(A56) 

with A h = 

√ 

κ2 α2 

1 −λrR 
. By setting the boundary conditions of traction free at R̄ = 1 , namely ˜ S rR = 0 , ˜ S θR = 0 and 

˜ S zR = 0 . We can

attain the boundary conditions of Eq. (A56) which needs to satisfy as: 

A 

′ 
1 u 1 − ( ̄p ) 

0 
(
γrZ A 

′ 
3 u 2 − λzZ A 

′ 
1 u 1 

)
− A 4 

λrR 

= 0 , (A57) 

A 

′ 
2 u 1 − ( ̄p ) 

0 λzZ 
A 1 ω + A 2 

R 

u 1 + ( ̄p ) 
0 γrZ 

A 3 ω 

R 

u 2 = 0 , (A58) 

A 

′ 
3 u 2 + λrR γrZ A 4 + ( ̄p ) 

0 γrZ 

(
λ2 

rR γrZ A 

′ 
3 u 2 − λ3 

rR A 3 u 

′ 
2 − A 

′ 
1 u 1 

)
+ ( ̄p ) 

0 λrR A 1 u 

′ 
1 = 0 . (A59) 

The combination of Eq. (A47) and Eq. (A57) results in the following equation in the dimensionless form as: 

A 

(3) 
1 

(1) + 4 A 

′′ 
1 (1) + 

[
1 − 2 ω 

2 − ζω 

2 − A 

2 
h 

]
A 

′ 
1 (1) + 

[
ω 

2 − 1 + ω 

2 κ2 α2 − A 

2 
h 

]
A 1 (1) = 0 , (A60) 

with ζ ( ̄Z 0 ) = 

1 
2 κ

2 α2 + 

1 
2 λ

−6 
rR 

+ C 3 λ
−2 
rR 

, C 3 = 

1 
cos 2 κ

[ 1 − 1 
2 κ

2 α2 ] − 1 
2 cos 4 κ . 

The combination of Eq. (A53a) and Eq. (A58) results in the following equation in the dimensionless form as: 

A 

′′ 
1 (1) + ( 2 − ζ ) A 

′ 
1 (1) + ζ

(
ω 

2 − 1 

)
A 1 (1) = 0 . (A61) 

The third boundary condition in Eq. (A59) automatically satisfies since A 3 ≈ 0. 

In summary, the ODE for A 1 in the dimensionless form is expressed in Eq. (A56) with two boundary conditions in

Eq. (A60) and Eq. (A61) . To solve the forth ODE, we observe that this ODE can be separated into following two parts, both

of which are in the Euler–Cauchy type: 

R̄ 

4 A 

(4) 
1 

+ 6 ̄R 

3 A 

(3) 
1 

+ 

(
5 − 2 ω 

2 
)
R̄ 

2 A 

′′ 
1 −
(
2 ω 

2 + 1 

)
R̄ A 

′ 
1 + 

(
ω 

2 − 1 

)2 
A 1 , (A62) 

R̄ 

2 A 

(2) 
1 

+ 3 ̄R A 

′ 
1 −
(
ω 

2 − 1 

)
A 1 . (A63) 

If both of them goes to zero together, then the system can be solved. The corresponding characteristic functions of

Eq. (A62) and Eq. (A63) are f 1 ( λ) and f 2 ( λ) respectively with λ is the characteristic solutions: 

f 1 ( λ) = λ( λ − 1 ) ( λ − 2 ) ( λ − 3 ) + 6 λ( λ − 1 ) ( λ − 2 ) 

+ 

(
5 − 2 ω 

2 
)
λ( λ − 1 ) −

(
2 ω 

2 + 1 

)
λ + 

(
ω 

2 − 1 

)2 
, (A64) 

f 2 ( λ) = λ( λ − 1 ) + 3 λ −
(
ω 

2 − 1 

)
. (A65) 

Owning to f 1 ( −ω − 1 ) = f 1 ( −ω + 1 ) = f 1 ( ω − 1 ) = f 1 ( ω + 1 ) = 0 and f 2 ( −ω − 1 ) = f 2 ( ω − 1 ) = 0 , we know that both

−ω − 1 and ω − 1 are roots of both characteristic functions. Thus, we can attain the general solution of A 1 , reading as: 

A 1 

(
R̄ 

)
= c 1 ̄R 

ω−1 + c 2 g 2 
(
R̄ 

)
R̄ 

ω+1 + c 3 ̄R 

−ω−1 + c 4 g 4 
(
R̄ 

)
R̄ 

−ω+1 , (A66) 

where h 1 ( ̄R ) = R̄ ω−1 , h 2 ( ̄R ) = g 2 ( ̄R ) ̄R 
ω+1 , h 3 ( ̄R ) = R̄ −ω−1 and h 4 ( ̄R ) = g 4 ( ̄R ) ̄R 

−ω+1 are four characteristic functions, and c 1 , c 2 ,

c 3 and c 4 are arbitrary pre-factors. Since we are interested in the decay solutions, and h 3 and h 4 diverges as R̄ → 0 , thus

c 3 = c 4 = 0 . 

Since c 1 and c 2 are arbitrary constants, then we can have the decay solutions in the form with g 2 = 

∑ ∞ 

i =0 αi ̄R 
i and α0 = 1 ,

which indicates h 2 = 

∑ ∞ 

i =0 αi ̄R 
i + ω+1 . Insert these back to the ODE, we can attain α1 = 0 and all odd terms are zero, and 

αi +2 f 1 ( i + ω + 3 ) − A 

2 
h αi f 2 ( i + ω + 1 ) = 0 ; i ≥ 0 . (A67) 

This further indicates: 

α2 n = A 

2 n 
h 

n −1 ∏ 

i =0 

f 2 ( 2 i + ω + 1 ) 

f 1 ( 2 i + ω + 3 ) 
= A 

2 n 
h 

n −1 ∏ 

i =0 

[
1 

4 ( i + 2 ) ( ω + i + 2 ) 

]
= 

(
1 

2 

A h 

)2 n 
( ω + 1 ) ! 

( n + 1 ) ! ( n + ω + 1 ) ! 
. (A68) 

Consequently, the decay solution reads as: 

h 2 = ( ω + 1 ) ! 
(

2 

A h 

)ω+1 ∞ ∑ 

n =0 

(
1 

2 

A h ̄R 

)2 n + ω+1 1 

( n + 1 ) ! ( n + ω + 1 ) ! 
, (A69) 
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which can be further reduced to: 

h 2 = ( ω + 1 ) ! 
(

2 

A h 

)ω+1 
[

I ω 
(
A h ̄R 

)
− 1 

ω! 

(
A h ̄R 

2 

)ω ](
2 

A h ̄R 

)
, (A70)

with I ω ( • ) is the modified Bessel function of the first kind. For simplicity, we set h 1 = R̄ ω−1 and h 2 = 

1 
I ω ( A h ) 

I ω ( A h ̄R ) ̄R 
−1 ,

leading to the solution of A 1 : 

A 1 = c 1 ̄R 

ω−1 + c 2 
1 

I ω ( A h ) 
I ω 
(
A h ̄R 

)
R̄ 

−1 , (A71)

Non-trivial solution requires c 1 and c 2 cannot be zero simultaneously. Recalling the boundary condition in Eq. (A60) and

Eq. (A61) and by combining these two with Eq. (A68) , we can further attain 

c 1 
c 2 

= 

l A h 
I ω−1 ( A h ) 
I ω ( A h ) 

−
(
A 

2 
h 

+ l ω 

2 + lω 

)
lω ( ω − 1 ) 

, (A72)

c 1 
c 2 

= 

l ω 

2 A h 
I ω−1 ( A h ) 
I ω ( A h ) 

−
[
l ω 

3 + l ω 

2 + ω 

2 κ2 α2 
]

ω 

2 κ2 α2 − ωA 

2 
h 

− l ω 

3 + l ω 

2 
, (A73)

with l = 1 + ζ . The existence of non-trivial solution requires Eq. (A72) and Eq. (A73) be satisfied simultaneously. After sim-

plifying it, we have, (
l 2 ω 

3 A h + lA 

3 
h − l 2 ω A h 

) I ω−1 ( A h ) 

I ω ( A h ) 
−
(
2 l ω 

2 A 

2 
h + 2 l 2 ω 

4 − 2 l 2 ω 

2 + A 

4 
h 

)
+ 

(
2 l ω 

2 + ωA 

2 
h − lω A h 

I ω−1 ( A h ) 

I ω ( A h ) 

)
κ2 α2 = 0 . (A74)

Eq. (A74) gives the critical stretch for each mode of instability. The minimum critical stretch of a critical mode of insta-

bility ω c results in the critical stretch λc of the sample with aspect ratio α. We solved Eq. (A74) numerically. The critical

stretch λc , the critical number of instability ω c and the critical stress S c for the sample with different aspect ratios of α are

summarized in Fig. 5 . 
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