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Multimodal Surface Instabilities
in Curved Film–Substrate
Structures
Structures of thin films bonded on thick substrates are abundant in biological systems
and engineering applications. Mismatch strains due to expansion of the films or shrink-
age of the substrates can induce various modes of surface instabilities such as wrinkling,
creasing, period doubling, folding, ridging, and delamination. In many cases, the
film–substrate structures are not flat but curved. While it is known that the surface insta-
bilities can be controlled by film–substrate mechanical properties, adhesion and mis-
match strain, effects of the structures’ curvature on multiple modes of instabilities have
not been well understood. In this paper, we provide a systematic study on the formation
of multimodal surface instabilities on film–substrate tubular structures with different cur-
vatures through combined theoretical analysis and numerical simulation. We first intro-
duce a method to quantitatively categorize various instability patterns by analyzing their
wave frequencies using fast Fourier transform (FFT). We show that the curved
film–substrate structures delay the critical mismatch strain for wrinkling when the system
modulus ratio between the film and substrate is relatively large, compared with flat ones
with otherwise the same properties. In addition, concave structures promote creasing and
folding, and suppress ridging. On the contrary, convex structures promote ridging and
suppress creasing and folding. A set of phase diagrams are calculated to guide future
design and analysis of multimodal surface instabilities in curved structures.
[DOI: 10.1115/1.4036940]
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1 Introduction

Structures of thin films bonded on thick substrates are abundant
in biological systems and engineering applications; examples
include various biological tissues [1,2], flexible electronics and
wearable devices [3–6], strain-controlled superhydrophobicity
[7,8], and self-assembled patterns [9]. Mismatch strains due to
expansion of the films or shrinkage of the substrates can induce
various modes of surface instabilities including wrinkling
[10–15], creasing [16–20], period doubling [21–23], folding, ridg-
ing [24,25], delamination [26], 2D-buckling [27–30], 3D-buckling
[31–33], and hierarchical wrinkles [34–36]. Some examples of
surface instability patterns have been given in Fig. 1(a). Over last
few decades, various modes of instabilities in the film–substrate
structures have been studied individually [23,25,37,38] and sys-
tematically by categorizing them on phase diagrams [39–43]. It is
well known that these instabilities can be controlled by mechani-
cal properties such as rigidities of films and substrates, the adhe-
sion energies between them, and their mismatch strains or
compressive strains applied on the structures.

Many film–substrate structures found in nature, biological sys-
tems, and engineering applications are not flat but curved,
although previous studies have been focused on flat cases. For
example, Fig. 1(b) illustrates different surface instability patterns
on concave film–substrate structures. From left to right (Fig.
1(b)), mucosa-growth induced creases are seen in colon; the ana-
tomic ductus deferens in male reproductive system shows ridges
on surface; muscular arteries manifest doubling patterns along the
lamina; and wrinkling patterns are observed on the surface of
bronchus lumen. Film–substrate structures with convex surface
are commonly seen in plants, as shown in Fig. 1(c). From left to
right, a bitter melon shows creases on its surface; cactus develops

surface ridges; a tree stump reveals irregular doubling patterns on
its bark; and a cereus presents uniform wrinkling on its skin. Other
surface patterns on curved biological structures that have drawn
much attention in the biochemistry and biomedical fields include
morphological development of brain [44,45], growth-induced
creases and folds in tubular tissues [46,47], crumpled gut surfaces
[48–50], deformation of cell-culture substrates [51–54], and mor-
phological evolution of tumor growth [55–58]. In engineering,
curved film–substrate structures have been widely used in design
of flexible and stretchable electronics [3,59], active detachment of
biofouling [60–62], and control of aerodynamic drag [63,64].

A few theoretical and computational models have been devel-
oped to investigate the morphological instabilities and analyze the
bifurcation conditions on curved film–substrate such as cylindrical
[65–68] and spheroidal structures [9,69–72]. While previous stud-
ies have been focused on individual mode of instability such as
wrinkle, crease, and fold, the effects of the structures’ curvature
on multiple modes of surface instabilities have not been well stud-
ied or understood. In this paper, we provide a systematic study on
the formation of multimodal surface instabilities on film–substrate
structures with different curvatures through both theoretical analy-
sis and numerical simulation. We will focus our study on tubular
film–substrate structures with both convex and concave curvatures
(Fig. 1), as these structures appear abundantly in biological sys-
tems and engineering applications. We will apply the FFT method
to quantitatively categorize various instability patterns on curved
structures by analyzing their wave frequencies. Thereafter, we
will develop a theoretical model to predict the critical mismatch
strain and wavenumber of wrinkling instability on curved
film–substrate structures, followed by finite element simulation of
the formation of advanced modes of instabilities. We will show
that the curved film–substrate structures can delay the critical mis-
match strain for wrinkling for systems with relatively large
film–substrate modulus ratio, compared with flat ones with other-
wise the same properties. Furthermore, concave structures pro-
mote creasing and folding and suppress ridging, but convex
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structures promote ridging and suppress creasing and folding. A
set of phase diagrams will be calculated to guide future design
and analysis of multimodal surface instabilities on curved
structures.

The outline of this paper is as follows. Section 2 explains the
definition of configurations and quantities in the problem. In
Sec. 3, the FFT method is applied to quantitatively categorize the
surface instability patterns. In Sec. 4, basic equations of contin-
uum mechanics and incremental method in analyzing the defor-
mation and instability of film–substrate structures are
summarized. Section 5 presents the instability analysis to search
for the critical mismatch strain and wavenumber for wrinkling on
curved film–substrate structures. Section 6 accomplishes the finite
element simulations of various modes of instabilities on
film–substrate structures with various curvatures, mismatch
strains, and modulus ratios. A set of phase diagrams for predicting
various modes of instabilities in curved structures will be provided
with the curvature’s effects discussed. Final conclusions are made
in Sec. 7.

2 Definition of States of the Film–Substrate Structures

Consider the plane-strain, incompressible deformation of a
tubular film–substrate structure as illustrated in Fig. 2. The film
can be bonded on the inner (Fig. 2(a)) or outer (Fig. 2(d)) surface
of the tubular substrate, which gives the negative or positive cur-
vature for the film–substrate structure, correspondingly. At the
reference state (Figs. 2(a) and 2(d)), there is no mismatch strain
between the film and the substrate, and a material point in the
structure is denoted by its cylindrical coordinates (R, H, Z). The
structure has the film radius A and interfacial radius B at the

reference state (note that for negative-curvature structure, far-end
of the substrate has radius C and C�B). The film thickness H at
the reference state is defined as H ¼ jA� Bj. A mismatch strain
may be applied to the system by either shrinking the substrate or
expanding the film. In the current study, we will shrink the sub-
strate to introduce the mismatch strain.

Under the mismatch strain, the film–substrate structure is
deformed into the current state, and the material point (R, H, Z)
moves to a new location (r, h, z) at the current state in the cylindri-
cal coordinate. The deformation of the structure may maintain
homogenous (Figs. 2(b) and 2(e)) or become unstable (i.e., pat-
terned in Figs. 2(c) and 2(f)) at the current state. The structure
maintains tubular and patternless at the current homogeneous
state with the film radius a and interfacial radius b. Based on the
schematics in Fig. 2, the mismatch strain at the interface between
the film and substrate at the current homogeneous state can be cal-
culated as

eM ¼ B� bð Þ=B (1)

For the convenience of future discussion, we define the normal-
ized curvature of the curved film–substrate structure as

q ¼ A� Bð Þ=b (2)

A material point in the film has radius R at the reference state,
and it moves to a new location at the current homogeneous state
with radius r (Fig. 2). The circumferential compressive strain in
the film at the current homogeneous state can be calculated as

ef ¼ R� rð Þ=R (3)

Fig. 1 Surface instabilities on curved film–substrate structures in nature and engineering applications. (a)
Instabilities on flat structure (from left to right: crease, ridge, double, and wrinkle); (b) multimodal instabilities
on concave structures (from left to right: cross section of colon, ductus deferens, muscular artery, and bron-
chus); and (c) multimodal instabilities on convex structures (from left to right: cross section of bitter melon, cac-
tus, tree stump, and cereus).
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Unlike in flat film–substrate systems, the compressive strain ef

is not constant throughout the thickness of the film. From the
incompressibility condition, we can derive the circumferential
compressive strain in the film at current homogeneous state as a
function of radius R and the applied mismatch strain eM at the
interface

ef ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1� eMð Þ2 � 1

h i
B

R

� �2
s

(4)

where A � R � B for concave structures and B � R � A for con-
vex structures. At the film–substrate interface, Eq. (4) can be
reduced to ef R ¼ Bð Þ ¼ eM. As R moves from the interface
R ¼ Bð Þ to film surface R ¼ Að Þ, the compressive strain ef

increases in the concave structures and decreases in the convex
structures.

3 Quantitative Categorization of Surface Instability

Patterns

While different modes of surface instabilities have different
morphological patterns, categorizations of these surface instabil-
ities patterns have mostly followed qualitative approaches. For
example, the distinctions between wrinkles and advanced modes
of instabilities including ridges, period doubles, and folds have
only been qualitatively prescribed by previous researchers
[15,16,24,37,39–43]. In addition, the introduction of curvatures in
film–substrate systems will make the categorization of different
modes of instabilities more complicated, as the curvature will
affect the morphology of the same mode of instability (e.g., Figs.
3(a)–3(c)). As different modes of surface instabilities have differ-
ent types of spatial periodicities, we propose to use the fast Fou-
rier transformation method to quantitatively categorize various
modes of surface instabilities by their frequency distribution.
While this method has been used to analyze instability transition
from wrinkle to crease of a flat graded material [37], here we fur-
ther apply this method to distinguish various modes of instability
patterns on curved surfaces. The frequency is in the space domain,
and it is described by the wavelength of the instability pattern.

At the current patterned state, we record the coordinates of
evenly distributed m points on the film surface (i.e., (r, h, z) at
R¼A) from experiments or simulations. While the z coordinate is
a constant due to plane-strain deformation, the r can be expressed
as a function of h, which ranges from 0 to 2p with equal interval
of 2p= m� 1ð Þ. The FFT computes the discrete Fourier transform

(DFT) of the surface deformation by decomposing the deforma-
tion into components of different wave frequencies

ypþ1 ¼
Xm�1

j¼0

e�
2pi
m

� �jp
rjþ1 (5)

where i represents the imaginary unit, and p and j iterate from 0 to
m � 1. The absolute value of y denotes the amplitude of each fre-
quency in the current deformed surface. Here, we normalize the
amplitude of the decomposed wave frequencies by the amplitude
of the dominant frequency for the surface deformation at current
state. As shown in Fig. 3, the deformation configuration was cate-
gorized by FFT into different states, which are patternless, wrin-
kle, crease, fold, double, and ridge. (Note that the film and
substrate are assumed to be perfectly bonded without delamination
in the current study.) By performing FFT, we find the characteris-
tics of the deformation states are quantitatively distinguishable in
the frequency domain. The detailed FFT characterization of vari-
ous patterns on curved structures in Fig. 3(c) is discussed as
follows.

(i) Patternless state: Before the film–substrate system mani-
fests instabilities on surface, the surface remains pattern-
less under homogeneous deformation, and no wave
frequency is detected by FFT.

(ii) Wrinkling state: When the critical strain for wrinkling is
reached, the initially patternless film surface develops
sinusoidal wave, and a single frequency is detected by
FFT.

(iii) Creasing state. Unlike wrinkling, the creasing patterns are
localized self-contacts developed on the initially pattern-
less surface. The FFT spectrum of the creasing pattern
consists of a wide range of wave frequencies with different
amplitudes, as shown in Fig. 3(c) (crease).

(iv) Folding state: After the film wrinkles during surface defor-
mation, the valley regions of the wrinkles may further
form self-contacts, giving the folding state [41]. It has a
dominant wrinkling frequency coupled with many low
amplitude wave frequencies, which represent the wave
components close to the tip of the fold.

(v) Doubling state: Doubling is another post-buckling transi-
tion from the wrinkling state [22]. During doubling evolu-
tion, initial wrinkles bifurcate into two branches, and the
branching process results in two dominating frequencies
for the doubled state. The large-amplitude (dominant) fre-
quency represents the wrinkling instability, and the other

Fig. 2 Schematics for plane-strain deformation of concave film–substrate structure
(a)–(c) and convex film–substrate structure (d)–(f). (a) and (d) represent the reference
states; (b) and (e) denote the homogeneous current states; and (c) and (f) illustrate the
patterned current states.
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frequency with smaller amplitude represents the doubling
instability, as shown in Fig. 3(c) (double).

(vi) Ridging state: Ridge is a height-limited regional localiza-
tion that has a higher amplitude compared with wrinkle.
For a curved film–substrate structure, it is usually difficult
to distinguish ridge from wrinkle qualitatively. However,
the wave frequency distribution of the FFT of ridge quanti-
tatively shows that the ridging profile is not perfectly sinu-
soidal. There is a dominant wave frequency which
corresponds to the wavelength of ridging, and this main
frequency is accompanied by many small-amplitude wave
components, as illustrated in Fig. 3(c) (ridge).

4 Theoretical Modeling for Wrinkling Instability on

Curved Film–Substrate Structures

The surface stability of various film–substrate structures have
been theoretically investigated with bifurcation and perturbation
analysis, such as creasing on flat homogeneous half space [10],
creasing and folding on half space with exponentially decayed
modulus [37,73], wrinkling on flat film–substrate structure
[13,16], instability bifurcations of thick-walled circular cylindrical
[65,66,74–76], and buckling instability on cylindrical multilayer
structure along circumferential and longitudinal directions
[68,77]. In this paper, we will adopt the incremental theory to ana-
lyze the critical mismatch strain and critical wavenumber of wrin-
kling instabilities on curved film–substrate structures.

4.1 General Form of Governing Equations. Consider the
plane-strain deformation of a tubular film–substrate structure, a
material point at position X at the reference state moves to a new
position x at the current state. The deformation gradient tensor is
defined as

F ¼ Gradx ¼ @x

@X
(6)

where the Jacobian of the deformation gradient det Fð Þ ¼ 1 for an
incompressible material. The constitutive behavior of the incom-
pressible hyperelastic material is defined through its strain energy
density W(F), and the nominal stress S and Cauchy stress r are
defined through

S ¼ @W

@F
� pF�1 (7)

r ¼ F
@W

@F
� pI (8)

where p is the hydrostatic pressure to accomplish the incompressi-
bility condition in the calculation.

The equilibrium equation in Lagrangian form satisfies

Div S ¼ 0 (9)

or in Eulerian form

div r ¼ 0 (10)

4.2 Formulation Under Cylindrical Coordinates Under
Homogeneous Deformation. To simplify the notations in the for-
mulation, we use e1; e2; e3 to represent the unit vectors to the
cylindrical coordinate r; h; z at the current homogeneous state.
Based on the incompressibility condition, the stretches in three
principal axes along radial r, circumferential h, and axial z direc-
tions are

k1 ¼
@r

@R
¼ 1

k
; k2 ¼

r

R
¼ k; k3 ¼ 1 (11)

Along the principal axes, the principal Cauchy stress reads

ri ¼ ki
@W

@ki
� p; i ¼ 1; 2; 3 (12)

Fig. 3 Instability patterns on curved film–substrate structure and their FFT characteriza-
tion. (a) and (b) Patternless state and instability patterns of wrinkle, crease, fold, double,
and ridge on concave and convex film–substrate structures, respectively. (c) FFT charac-
terization of the instability patterns.
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The equilibrium condition at the current homogeneous state has
the form

r
dr1

dr
þ r1 � r2 ¼ 0 (13)

The curved film–substrate structure should satisfy the traction-
free boundary conditions on the surface of the film

rn ¼ 0 at r ¼ a (14)

and the continuity of displacement and traction at the
film–substrate interface gives

kuk ¼ 0; krnk ¼ 0 at r ¼ b (15)

where n denotes the normal unit vector of the surface or interface
at the current state, and kk represents the jump of a quantity.

4.3 Incremental Equations. The incremental method for
thick-walled tube instability was developed by Haughton and
Ogden [78]. Consider u xð Þ ¼ _x Xð Þ as the incremental displace-
ment vector, and define the incremental deformation gradient _F0

as

_F0 ¼ _FF�1 ¼ grad u ¼
ur;r

1

r
ur;h � uhð Þ

uh;r
1

r
uh;h þ urð Þ

2
664

3
775 (16)

with ur; uh the incremental displacement in the radial and circum-
ferential directions, respectively.

The incompressibility condition in the incremental form reads

tr _F0 ¼ 0 (17)

which further gives

ur;r þ
1

r
uh;h þ urð Þ ¼ 0 (18)

The incremental nominal stress is then derived as

_S ¼ D _F � _pF�1 þ pF�1 _FF�1 (19)

where D is the elasticity tensor

D ¼ @2W

@F@F
(20)

The corresponding form of the incremental nominal stress at the
current state is defined through

_S0 ¼ B _F0 þ p _F0 � _pI (21)

where B represents the fourth-order tensor of instantaneous elastic
moduli. Components of B are listed below [79]

Biijj ¼ Bjjii ¼ kikjWij (22)

Bijij ¼
kiWi � kjWj

ki
2 � kj

2
ki

2; ki 6¼ kj (23)

Bijji ¼ Bjiij ¼ Bijij � kiWi; i 6¼ j (24)

where Wi ¼ @W=@ki and Wij ¼ @2W=@kikj (no summation of
index).

The equilibrium equation in terms of the incremental nominal
stress at the current state satisfies

div _S0 ¼ 0 (25)

Furthermore, the traction-free condition in the incremental form at
the current state is

_S
T

0n ¼ 0 (26)

5 Surface Instability Analysis and Discussions

The film–substrate system is modeled as neo-Hookean materi-
als for both the film and substrate, whose strain energy function is
defined as

W ¼ l
2

k2
1 þ k2

2 þ k2
3 � 3

� �
(27)

where l ¼ lf when A<R<B for concave structures (B<R<A
for convex structures) and l ¼ ls when R>B for concave struc-
tures (0<R<B for convex structures). Here, lf and ls are the ini-
tial shear moduli of the film and substrate, respectively.

From the strain energy function Eq. (27) and the incompressi-
bility condition Eq. (18), we can derive the equilibrium equations
in the incremental form as

B1111ur;rr þ B1111;r þ p;r þ
1

r
B1111

� �
ur;r þ B2121

1

r2
ur;hh

þ 1

r
B1122;r � B2222

1

r2

� �
ur þ

1

r
B2112 þ B1122

1

r

� �
uh;rh

þ B1122;r
1

r
� B2222

1

r2
� B2121

1

r2

� �
uh;h � _p ;r ¼ 0

(28)

B1212uh;rr þ B2222

1

r2
uh;hh þ B1212;r þ

1

r
B1212

� �
uh;r

� B1221;r
1

r
þ B2121

1

r2
þ p;r

1

r

� �
uh

þ B1221

1

r
þ 1

r
B2211

� �
ur;rh þ B1221;r

1

r
þ B2222

1

r2

�

þ B2121

1

r2
þ p;r

1

r

�
ur;h �

1

r
_p;h ¼ 0 (29)

To solve for the critical mismatch strain and wavenumber of the
instability problem, we assume the solutions have the form

ur ¼ Ur rð Þcos nhð Þ
uh ¼ Uh rð Þsin nhð Þ
_p ¼ P rð Þcos nhð Þ

(30)

where n is the wrinkling wavenumber on the film surface.
From the incompressibility condition in Eq. (18), we can elimi-

nate Uh rð Þ and rewrite Eqs. (28) and (29) as

rB1122;r � B2222 � n2B2121

� �
Ur

þ r2 B1111;r þ p;r þ
1

r
B1111

� �
Ur;r þ r2B1111Ur;rr

þn rB1122;r � B2222 � B2121ð ÞUh

þ rn B2112 þ B1122ð ÞUh;r � r2P;r ¼ 0

(31)

n rB1221;r þ B2222 þ B2121 þ rp;rð ÞUr þ nr B1221 þ B2211ð ÞUr;r

þ rB1221;r þ B2121 þ n2B2222 þ rp;r
� �

Uh

� r2 B1212;r þ
1

r
B1212

� �
Uh;r � r2B1212Uh;rr � rnP ¼ 0 (32)
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with the traction-free boundary conditions at r¼ a

1

r
B1212 ur;h � uh þ ruh;rð Þ ¼ 0 (33)

B1111 þ k1

@W

@k1

� B1122

� �
ur;r � _p ¼ 0 (34)

the displacement condition for concave structure at r¼ c, and for
convex structure at r¼ 0

ur ¼ 0; u0r ¼ 0 (35)

and the continuity condition for displacement and traction at r¼ b

kurk ¼ 0; ku0rk ¼ 0 (36)

				 1

r
B1212 ur;h � uh þ ruh;rð Þ

				 ¼ 0 (37)

				 B1111 þ k1

@W

@k1

� B1122

� �
ur;r � _p

				 ¼ 0 (38)

where k k denotes the jump of certain quantity at the interface as
defined previously.

For neo-Hookean material, we have B1122 ¼ B2211 ¼ B2112

¼ B1221¼ 0. The only nonzero components of B are

B1111¼ B1212¼
l

k2
(39)

B2222¼ B2121¼ lk2 (40)

where k and 1=k are the principal stretch along the circumferential
h and radial r directions, respectively, as defined in Eq. (11). We
will specify k ¼ kf for the film and k ¼ ks for the substrate, when
it is needed in later parts of the analysis.

From the equilibrium condition Eq. (13), we have

1

l
p;r ¼

1

r
2� k2 � 1

k2

� �
(41)

By plugging Eq. (41) into Eqs. (31) and (32), we can eliminate p
and write the final fourth-order ordinary differential equation
(ODE) as

U0000 þ 1

r
4k2 þ 2ð ÞU000 þ 1

r2
8k2 � n2k4 � 3� n2ð ÞU00

þ n2

r3
2k6 � 3k4 þ 3

n2
� 4k2

n2
þ 1� 2k2

� �
U0

þ n2

r4
3� k4 � 3

n2
þ 4k2

n2
þ n2k4 � 4k2

� �
U ¼ 0 (42)

The boundary conditions are rewritten in terms of (U, U0, U00, U000)
at film surface r¼ a

l

k2
r

1

n
U00 þ 1

n
U0 þ 1

r
n� 1

n

� �
U


 �
¼ 0

2l

k2
U0 � P ¼ 0 (43)

and at substrate r¼ c for concave structure, or r¼ 0 for convex structure

U ¼ 0; U0 ¼ 0 (44)

For the interface, we have the continuity condition for displace-
ment and traction at r¼ b

kUk ¼ 0; kU0k ¼ 0 (45)

				 l

k2
r

1

n
U00 þ 1

n
U0 þ 1

r
n� 1

n

� �
U


 �				 ¼ 0				 2l

k2
U0 � P

				 ¼ 0

(46)

The fourth-order differential equation can be written in a matrix
form

U0000 � A44U000 � A43U00 � A42U0 � A41U ¼ 0 (47)

Y0 ¼ AY

A rð Þ ¼

0 1 0 0

0 0 1 0

0 0 0 1

A41 A42 A43 A44

2
66664

3
77775

Y rð Þ ¼ U U0 U00 U000
� 
T

(48)

with the coefficients

A41 ¼ �
n2

r4
3� k4 � 3

n2
þ 4k2

n2
þ n2k4 � 4k2

� �

A42 ¼ �
n2

r3
2k6 � 3k4 þ 3

n2
� 4k2

n2
þ 1� 2k2

� �

A43 ¼ �
1

r2
8k2 � n2k4 � 3� n2ð Þ

A44 ¼ �
1

r
4k2 þ 2ð Þ

(49)

Now let’s assume the current state is the onset of the wrinkling.
The corresponding homogeneous configuration of the substrate is
stress free (i.e., the circumferential principal stretch of the sub-
strate ks¼ 1), and the corresponding homogeneous configuration
of the film has circumferential principal stretch kf induced by the
mismatch strain at the film–substrate interface. From the incom-
pressible condition at the current homogeneous state, we can
calculate

kf ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � 1� eMð Þ2 � 1

h i
B2

r (50)

where B is the interfacial radius at the reference state, as illus-
trated in Fig. 2.

The fourth-order ODE in Eq. (47) is applicable to both the film
and the substrate. There are in total eight boundary conditions to
be considered when solving the problem: two traction-free condi-
tions at the film surface (Eq. (43)), two displacement conditions at
the far-end of the substrate (r¼ c for concave structure and r¼ 0
for convex structure) (Eq. (44)), and four continuity conditions for
traction and displacement at the interface (Eq. (45)). To solve the
system, we first integrate the ODE from both the film and the sub-
strate sides to the interface by guessing two sets of solutions which
satisfy the four boundary conditions in Eqs. (43) and (44) for the
film and the substrate, respectively. We further match the four
continuity boundary conditions (Eq. (45)) at the film–substrate
interface. The explicit matrix form of Eq. (45) is shown in the
Appendix. To have nontrivial solutions, the determinant of the
interface condition matrix must vanish. We can then numerically
solve the eigenvalue problem to search for the critical mismatch
strain eWrinkle

M for wrinkling of the curved film–substrate structure.
To explore the curvature effect on wrinkling, we examine criti-

cal mismatch strain eWrinkle
M and critical wavenumber nc for the

film–substrate system with different normalized curvatures
q ¼ �0:1;�0:04;�0:02; 0; 0:02; 0:04; and 0:1, as shown in
Fig. 4(a). We plot critical mismatch strain for film–substrate
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system with modulus ratio lf =ls ranging from 10 to 104 in
Fig. 4(a). The solid curves from left to right denote the critical
mismatch strains for wrinkling of the film-substrate system with
normalized curvature q¼ 0, 0.02, 0.04, and 0.1, respectively
[15,37,41]. The dotted curves from left to right are for structures
with the normalized curvature q¼�0.02, �0.04, and �0.1,
respectively. From Fig. 4(a), we can see that for different normal-
ized curvature amplitudes, the critical mismatch strains for wrin-
kling deviate significantly when the modulus ratio is beyond 100.
Under this condition, the curvature of film–substrate structure
delays wrinkling compared with the flat film–substrate structure. In
addition, Fig. 4(b) shows the critical wavenumber for the three
examined normalized curvature amplitudes. Our calculation shows
that the critical wavenumber for wrinkling is the same for concave
and convex structures with the same curvature magnitudes.

6 Phase Diagrams for Multimodal Surface

Instabilities on Curved Film–Substrate Systems

Wrinkling is a mode of surface instability that occurs under rela-
tively low mismatch strains and can be predicted analytically as
discussed in Sec. 5. As the mismatch strain further increases,
advanced modes of surface instabilities such as creasing, folding,
doubling, and ridging may occur. To quantitatively understand and
predict various modes of surface instabilities in curved film–
substrate structures, we adopt the finite element method to system-
atically investigate the occurrence and evolution of multimodal
surface instabilities and, in particular, the curvature’s effects on
these instabilities.

We implement the two-dimensional plane-strain tubular
film–substrate structures with negative and positive curvatures
illustrated in Figs. 2(a) and 2(d) into finite element models using
software package ABAQUS/STANDARD. The 2D plane-strain four-

node bilinear element with reduced integration and hourglass con-
trol (CPE4RH) is used for the negative-curvature case. For the
positive-curvature case, in order to satisfy the incompressibility
requirement, the 3D eight-node linear brick with reduced integra-
tion, hourglass control, and hybrid with constant pressure
(C3D8RH) is used. We validate the mesh insensitivity of the mod-
els using different mesh densities, which give surface deformation
with the same critical mismatch strain and instability patterns. A
random perturbation with small amplitude is applied to the mesh
of film surface to trigger the instability during loading. We also
validate that the instability patterns are perturbation insensitive. A
self-contact interaction with the type of frictionless and “hard con-
tact” is applied to the film surface to avoid element penetration
during creasing and folding deformations.

The incompressible neo-Hookean constitutive model is adopted
for both the film and substrate with different shear modulus lf

and ls, respectively. The modulus ratio lf =ls ranges from 10�1 to
104 in our simulation. The mismatch strain eM can be induced by
prestretching the substrate, shrinking the substrate, or expanding
the film. The path independency of the loading method has been
discussed in literature [40]. To induce the film–substrate mis-
match strain in our simulation, for the negative-curvature system,
we prestretch the substrate along the radial direction, bond the
film on the substrate, and then relax the prestretch in the substrate.
For the positive-curvature system, we directly shrink the substrate
(without prestretch) by assigning thermal expansion coefficient to
the substrate and applying thermal loading to control the shrink-
age. The instability patterns are evaluated and categorized by the
FFT method introduced in Sec. 3. In the simulation, creasing is
usually hard to be triggered on smooth surface without sufficient
imperfection or undulation. Following previous studies, the creas-
ing instability is predicted to occur, when the compressive strain
on the film surface reaches a critical value, 0.35 [17,46].

Fig. 4 Curvature effects on the onset of wrinkling for the curved film–substrate systems. (a) Critical mismatch strain for systems
with different normalized curvatures. The solid curves from left to right are for q 5 0, 0.02, 0.04, and 0.1. The dotted curves from left
to right are for q 5 20.02, 20.04, and 20.1 (color version online). (b) Changing of critical mode number nc with film–substrate mod-
ulus ratio for structures with different curvatures.

Journal of Applied Mechanics AUGUST 2017, Vol. 84 / 081001-7

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/936316/ on 07/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



We summarize the results from the finite element simulations
in phase diagrams given in Figs. 5(a)–5(e), for five normalized
curvatures q ¼ �0:1;�0:04; 0; 0:04; and 0:1, respectively. Each
phase on the phase diagrams represents a type of surface instabil-
ity pattern as categorized by the FFT method introduced in Sec. 3,
and the governing parameters for phase diagrams are normalized
curvature, modulus ratio, and mismatch strain of the
film–substrate system. From Fig. 5, it can be seen that the phase
diagrams of surface instability patterns share a number of com-
mon features. Patternless and wrinkling phases occur at relatively
small mismatch strains. Compared with patternless and wrinkling,
other modes of instabilities take place when the mismatch strains
are relatively large. Creasing and folding states develop in

film–substrate structures with relatively low modulus ratios, while
doubling and ridging states require higher modulus ratios. Despite
these common features, the curvatures of film–substrate structures
can affect the instability patterns significantly (Fig. 5). To under-
stand the film–substrate curvature’s effects, we compare the sur-
face instability patterns in film–substrate structures with different
curvatures but the same mismatch strains and modulus ratios, as
demonstrated in Figs. 5(a)–5(e).

Creasing is promoted by negative curvature and suppressed by
positive curvature. The region of creasing instability is marked by
orange color in the phase diagrams in Fig. 5. It has been proven
that for film–substrate system with relatively small modulus ratio
lf =ls < 1:3, the patternless-creasing transition takes place when

Fig. 5 Phase diagrams for mismatch-strain induced instability patterns on curved film–substrate structure with
different normalized curvatures. (a)q 5 20:1; (b)q 5 20:04; (c)q 5 0; (d)q 5 0:04; and (e)q 5 0:1. Blue solid curve
denotes the theoretical buckling condition. Black solid curves represent simulated phase boundaries. Colored
regions represent different phases: purple for flat, green for winkle, orange for crease, yellow for fold, red for
double, blue for ridge, and dark blue for disordering. The instability morphologies of the highlighted points
(A–O) are shown in Fig. 6 (see color figure online).
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the compressive strain on the film surface exceeds 0.35
[17,40,46]. Before this critical point, the system maintains homo-
geneous deformation as illustrated in Figs. 2(b) and 2(e). As
explained in Sec. 2, for curved film–substrate structure with mis-
match strain, the circumferential compressive strain distribution
along the thickness of the film is not uniform. Considering the cur-
rent homogeneous state of the curved film–substrate structure as
the critical state for creasing (i.e., the compressive strain at the
film surface R¼A is 0.35), we can solve for the corresponding
critical mismatch strain for creasing eCrease

M from Eq. (4)

eCrease
M qð Þ ¼ 1��231qþ 20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
231q2 þ 169

p
231q2 þ 400

(51)

The critical mismatch strain for the selected cases q ¼ �0:1;
�0:04; 0; 0:04; and 0:1 is then calculated to be eCrease

M
¼ 0:29; 0:33; 0:35; 0:38; and 0:41, respectively. Additionally, for
normalized curvatures in the range of �0:5 � q � 0:5, the eCrease

M
can be approximated by the following linear function of q:

eCrease
M qð Þ ¼ 0:53qþ 0:35;�0:5 � q � 0:5 (52)

Evidently, the critical mismatch strain for creasing increases with
the normalized curvature of the film–substrate structure. For
curved film–substrate structure with q < 0, the critical mismatch

strain eCrease
M for creasing is smaller than 0.35. On the contrary,

eCrease
M is larger than 0.35 for system with q > 0.

Folding is promoted by negative curvature and suppressed by
positive curvature. The curvature of the film–substrate structure
has significant effects on the phase boundaries between folding
and adjacent phases including wrinkling, doubling, and ridging.
From Figs. 5(a)–5(e), it reveals that the area of the folding region
(marked by yellow) on the phase diagram decreases significantly
when the surface of the film–substrate structure goes from con-
cave to flat, then to convex (q goes from negative to zero, then to
positive), which means that folding is promoted by concave sur-
face. Folding can take place right after wrinkling instability when
the modulus ratio is relatively low (near lf =ls ¼ 1:3). In this
case, the local film strain at the wrinkling valley reaches the criti-
cal mismatch strain for creasing (ef ¼ 0:35) immediately after
wrinkling, and the surface initiates a crease tip at the valley of the
wrinkle. Folding can also manifest upon well-developed wrinkles,
when lf =ls is larger. The phase diagram in Fig. 5(a) for concave
structure q ¼ �0:1 shows that the critical mismatch strain to trig-
ger folding is within a range of 0:29 � eM � 0:40, for modulus
ratio 1:3 � lf =ls � 80. For concave surface with normalized cur-
vature q ¼ �0:04 as shown in Fig. 5(b), folding initiates on film
surface under mismatch strain 0:33 � eM � 0:35, for modulus
ratio 1:3 � lf =ls � 15. Figure 5(c) illustrates the phase transi-
tions for flat film–substrate structure (q ¼ 0). From the phase dia-
gram, we can see that the folding transition on film surface starts
with mismatch strain 0:35 � eM � 0:45, for modulus ratio
1:3 � lf =ls � 12. For convex film–substrate structures, the fold-
ing region is even more significantly reduced, as shown in the
phase diagrams in Figs. 5(d) and 5(e). The critical mismatch strain
for folding is postponed to 0:37 � eM � 0:40 and 0:41
� eM � 0:45, for normalized film–substrate curvatures q ¼ 0:04
and 0:1, respectively. Moreover, the range of modulus ratio for
folding is shrunken to 1:3 � lf =ls � 6 for both cases.

In general, negative curvature promotes folding by requiring
relatively small mismatch strains for patternless-folding transition,
and allowing relatively wide ranges of film–substrate modulus
ratio for the folding phase. This trend can be understood as fol-
lows. The inhomogeneous distribution of the circumferential com-
pressive strain throughout the thickness of the film leads to the
curvature effect on surface instabilities. With the same interfacial
mismatch strain eM between the film and substrate, concave struc-
ture gives higher compressive strain on the film surface than flat
structure, and thus promotes folding. On the contrary, convex

structure gives lower compressive strain on the film surface com-
pared to the flat structure, and thus suppresses folding.

We further use a few points with the same modulus ratio and
mismatch strain (i.e., lf =ls ¼ 30; eM ¼ 0:5 for points (A–E) and
lf =ls ¼ 30; eM ¼ 0:6 for points (F–J)) on the phase diagrams
with different normalized curvature (i.e., q ¼ �0:1;�0:04;
0; 0:04; and 0:1) to discuss curvature’s effect on folding, as
shown in Figs. 6(a) and 6(b). Points (A) and (F) show folding
instability on the film surface, for normalized film–substrate cur-
vature q ¼ �0:1. Folding disappears on film surface when the
normalized film–substrate curvature is increased to q ¼ �0:04 or
larger. In these cases, other instability phases such as doubling
and ridging are observed and will be discussed in the following
parts.

Ridging is promoted by positive curvature and suppressed by
negative curvature. On flat film–substrate structure, ridging insta-
bility is observed on film surface as an outward localization for
systems with relatively high mismatch strains and modulus ratio.
As discussed in Sec. 3, ridging is characterized by FFT and its
wave frequency components reveal the nonaxisymmetric geome-
try compared with wrinkling. Its FFT spectrum shows a dominant
wave frequency, which is accompanied by massive small-
amplitude frequencies as shown in Fig. 3(c). Here, our simulation
results further show that for curved film–substrate structures, the
curvature plays an important role in determining the ridging
phase.

The phase diagram in Fig. 5 indicates that the area of ridging
zone increases with the normalized film–substrate curvature. Flat
film–substrate structure (q ¼ 0) shows that the range of the criti-
cal mismatch strain for wrinkling–ridging transition is within
0:30 � eM � 0:40, for modulus ratio lf =ls � 150. For convex
system with film–substrate curvature q ¼ 0:04 shown in Fig. 5(d),
the critical mismatch strain for ridging is in the region of
0:35 � eM � 0:45, for a wide range of modulus ratio lf =ls � 10.
By further increasing the normalized film–substrate curvature to
q ¼ 0:1, ridging can be triggered at a small mismatch strain
around eM ¼ 0:30 for very small modulus ratio lf =ls � 1:3 (illus-
trated in Fig. 5(e)). Ridge-folds or ridge-doubles will develop on
film surface under continuous loading. On the contrary, for con-
cave film–substrate structure q < 0ð Þ, ridging is significantly sup-
pressed. As illustrated in Fig. 5(b) for system with normalized
curvature q ¼ �0:04, the triggering strain for ridging is postponed
to eM ¼ 0:50 compared with flat and convex film–substrate struc-
ture, and the corresponding range of modulus ratio for ridging is
lf =ls � 60. If we further increase the normalized curvature of the
system to q ¼ �0:1, no ridging transition is observed on film
surface, as shown in Fig. 5(a).

The contour plots for selected cases (A–E), (F–J), and (K–O) in
Figs. 6(a)–6(c) illustrate how positive curvature (convex struc-
ture) promotes ridging and suppresses folding. For system with
mismatch strains and modulus ratios eM ¼ 0:5;lf =ls ¼ 30, points
(D) and (E) in column (a) show ridging instability for normalized
film–substrate curvature q ¼ 0:04 and 0:1, respectively. In column
(b) with eM ¼ 0:6;lf =ls ¼ 30, ridge is observed for point (I) and
ridge-double is seen for point (J). For system with eM ¼
0:6;lf =ls ¼ 300 as shown in column (c), points (L) and (N)
reveal ridging instability and point (O) develops ridge-double on
film surface.

7 Conclusion

In this paper, we studied the curvature’s effects on multimodal
surface instabilities in tubular film–substrate structures, which are
commonly found in nature and engineering applications. We
proved that the curvature along with the mismatch strain and
modulus ratio of the film–substrate system determines the occur-
rence of various instabilities including wrinkling, creasing, fold-
ing, doubling, and ridging. We applied the FFT method to
characterize the surface instabilities quantitatively, by decom-
posing the wave frequencies of each instability mode. We then
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provided a systematic study on the formation of multimodal sur-
face instabilities on curved film–substrate structures with differ-
ent curvatures through combined theoretical analysis and
numerical simulation. We used the incremental theory to
predict the critical mismatch strain for wrinkling and wavenum-
ber for systems with different normalized film–substrate curva-
tures, under a wide range of film–substrate modulus ratio
(1 < lf =ls � 104). The results showed that large curvature mag-
nitudes can delay wrinkling significantly when the modulus ratio

is larger than 100. Our finite element simulations on post-
buckling of the curved film–substrate system showed that curva-
ture plays an important role in determining the phase boundaries
for various modes of instabilities. Concave structure (negative
curvature) has the trend of promoting folding and suppressing
ridging. Convex structure (positive curvature) promotes ridging
and suppresses folding. A set of phase diagrams are calculated to
systematically understand the curvature’s effect on multimodal
instabilities in film–substrate structures.

Fig. 6 The instability morphologies of the highlighted points (A–O) on the phase diagrams in Fig. 5. The con-
tour plots show the maximum in-plane nominal strain for each case. The five rows from top to bottom in each
column represent five different curvatures q 5 20:1;20:04; 0; 0:04; and 0:1. Column (a) includes (A–E), which
have the mismatch strain and modulus ratio eM 5 0:5;lf =ls 5 30. Column (b) includes (F–J), which have the mis-
match strain and modulus ratio eM 5 0:6;lf =ls 5 30. Column (b) includes (K–O), which have the mismatch strain
and modulus ratio eM 5 0:6; lf =ls 5 300.
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Appendix

The detail of derivation in Sec. 5 is partially shown here. The
explicit form of Eq. (25) can be written as

_S0rr;r þ
1

r
_S0hr;h þ

1

r
_S0rr � _S0hh

� �
¼ 0

_S0rh;r þ
1

r
_S0hh;h þ

1

r
_Shr þ

1

r
_Srh ¼ 0

(A1)

where

_S0rr;r ¼ B1111;rur;r þ B1111ur;rr þ B1122;r
1

r
uh;h þ urð Þ � B1122

1

r2
uh;h þ urð Þ þ B1122

1

r
uh;hr þ ur;rð Þ

þp;rur;r þ pur;rr � _p;r

_S0hr;h ¼ B2121;h
1

r
ur;h � uhð Þ þ B2121

1

r
ur;hh � uh;hð Þ þ B2112;huh;r þ B2112uh;rh þ p;huh;r þ puh;rh

_S0rh;r ¼ B1212;ruh;r þ B1212uh;rr þ B1221;r
1

r
ur;h � uhð Þ � B1221

1

r2
ur;h � uhð Þ þ B1221

1

r
ur;hr � uh;rð Þ

þ p;r
1

r
ur;h � uhð Þ � p

1

r2
ur;h � uhð Þ þ p

1

r
ur;hr � uh;rð Þ

_S0hh;h ¼ B2211;hur;r þ B2211ur;rh þ B2222

1

r
uh;hh þ ur;hð Þ þ B2222;h

1

r
uh;h þ urð Þ þ p

1

r
uh;hh þ ur;hð Þ

þp;h
1

r
uh;h þ urð Þ � _p;h (A2)

The boundary conditions in Eqs. (43)–(46) in matrix forms are shown here. First consider the traction-free condition at r¼ a

EYf að Þ ¼ 0

E ¼

1

a
2� 1

k2
f

� 2

n2
þ 1

n2k2
f

 !
� 1

n2
n2k2

f � 2þ 1

k2
f

þ 2n2

k2
f

 !
a

n2
2þ 2

k2
f

 !
r2

n2

1

k2
f

1

a
n� 1

n

� �
1

n
a

1

n
0

2
66664

3
77775

(A3)

the displacement boundary condition at r¼ c

FYs cð Þ ¼ 0 F ¼
1 0 0 0

0 1 0 0

" #
(A4)

the traction continuity boundary condition at interface r¼ b
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b
2� 1

k2
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� 2
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n2k2
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 !
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(A5)

The matrix form of the boundary conditions at interface is

QYf bð Þ ¼ VYs bð Þ

where Q and V are coefficient matrixes for film and substrate, respectively,
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Q ¼
Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

" #

V ¼
V11 V12 V13 V14

V21 V22 V23 V24

" # (A6)
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(A7)

V11 ¼ ls

b
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n2
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n2k2
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� �
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s

1

n
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k2
s

b

n

V24 ¼ 0

Then, we write the displacement continuity boundary condition at
interface r¼ b

Us � Uf ¼ 0

U0s � U0f ¼ 0
(A8)

The matrix form of Eq. (A8) is

TYf bð Þ ¼ TYs bð Þ

T ¼
1

0

0

1

0

0

0

0

" #
(A9)

The eigenvalue problem in Eqs. (A6)–(A9) can then be solved
numerically to search for the critical film–substrate mismatch
strain for wrinkling.
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