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A B S T R A C T

We present a large deformation viscoelasticity model for recently synthesized double network
hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains,
and an ionically-crosslinked alginate network with short chains. Such double-network gels are
highly stretchable and at the same time tough, because when stretched the crosslinks in the
ionically-crosslinked alginate network rupture which results in distributed internal micro-
damage which dissipates a substantial amount of energy, while the configurational entropy of the
covalently-crosslinked polyacrylamide network allows the gel to return to its original configura-
tion after deformation. In addition to the large hysteresis during loading and unloading, these
double network hydrogels also exhibit a substantial rate-sensitive response during loading, but
exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and
asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We
limit our attention to modeling the complex viscoelastic response of such hydrogels under
isothermal conditions. Our model is restricted in the sense that we have limited our attention to
conditions under which one might neglect any diffusion of the water in the hydrogel — as might
occur when the gel has a uniform initial value of the concentration of water, and the mobility of
the water molecules in the gel is low relative to the time scale of the mechanical deformation. We
also do not attempt to model the final fracture of such double-network hydrogels.

1. Introduction

A gel consists of crosslinked macromolecules and a solvent, and for hydrogels the solvent is water. Conventional hydrogels —
which are usually composed of a single network of a hydrophilic polymer — have low stiffness, strength, and toughness. Recently,
Gong and co-workers (cf., e.g., Gong et al., 2003; Gong, 2010, 2014) have synthesized several double-network hydrogels which have
high water content, ≈80–90 wt%, and possess mechanical properties which are remarkably superior to those of single network gels.

As is well-known the stiffness of a polymer network increases as its crosslink density increases, but it also becomes more brittle.
Double-network (DN) hydrogels consist of two interpenetrating polymer networks with contrasting mechanical properties; cf.
Fig. 1(a) for a schematic. The first network is sparsely crosslinked with long chains — so that it is compliant and stretchable, while
the second network is densely crosslinked with short chains—making it stiff and brittle. The two polymer networks are interlaced on
a molecular scale but not covalently bonded to each other.

• Double-network gels are tough because when stretched the crosslinks in the densely-crosslinked network rupture, resulting in
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distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the
sparsely-crosslinked network allows the gel to return to its original configuration after deformation.

There are several possible processing routes to synthesize double-network-based elastomeric gels in which the two networks have
contrasting mechanical properties (cf., e.g., Gong et al., 2003; Sun et al., 2012, 2013; Gong, 2014; Ducort et al., 2014; Zhao, 2014;
Zhang et al., 2015). The DN hydrogels synthesized by Sun et al. (2012) and Zhang et al. (2015) consist of a covalently-crosslinked
polyacrylamide (PAAm) network with long chains, and an ionically-crosslinked alginate network with short chains. When such a
double-network gel is deformed the ionic-crosslinks in the alginate network rupture, resulting in distributed internal microdamage
and dissipation due to such microdamage. Such PAAm-alginate gels have been shown to be highly stretchable, cf. Fig. 1(b), and they
also possess a high fracture energy up to Γ ≈ 9000 J/m2.

While several interesting characteristics of the mechanical response of double-network hydrogels including Mullins-type effects
have been reported in the literature (Wang and Hong, 2012; Zhao, 2012), to the best of our knowledge there is no published report
on a constitutive model for the complex large deformation viscoelastic response of such materials.1 The objective of this paper is to
present a large deformation viscoelasticity model for the type of DN hydrogels synthesized by Sun et al. (2012) and Zhang et al.
(2015). From the outset we restrict the scope of our modeling efforts in the following sense: (i) We limit our attention to conditions
under which one might make the approximation that the concentration of water in the gel is spatially and temporally constant, as
might occur when the gel has a uniform initial value of the concentration of water and the mobility of the water molecules in the gel
is low— relative to the time scale of the mechanical deformation. (ii) We limit our attention to modeling the deformation response of
such hydrogels under isothermal conditions. That is, we consider a purely mechanical theory under isothermal conditions, and
neglect any diffusion of the water in the hydrogel. We also do not attempt to model the final fracture of such double-network gels.

The plan of this paper is follows. We begin in Section 2 with some experimental results from simple extension experiments on a
DN hydrogel of the type studied by Zhang et al. (2015). In Section 3 we summarize a reasonably general continuum theory that we
specialize in Section 4 to model the complex viscoelastic response of the DN hydrogel under study. A procedure for estimation of the
material parameters in the specialized constitutive equations is discussed in Section 5, where we show that our model can reproduce
the major characteristic features of the response of the DN hydrogel, viz., (a) a large Mullins-type effect which manifests itself in
hysteresis during loading and unloading; and (b) an asymmetric rate-sensitive response during loading and unloading. These
features are quite different from the response of conventional elastomeric gels. In Section 6 we show results from a large deformation
double-shear experiment on DN hydrogel and show that our model can also predict the response of the material in double-shear with
reasonable accuracy. We close in Section 7 with some final remarks.

Fig. 1. (a) By combining two networks — one with long chains so that it compliant and stretchable, and another with short chains so that it is is stiff and brittle — a
tough double-network gelmay be created. The example shown here is for a double-network PAAm-alginate hydrogel which contains ∼90% water. (b) Photograph of a
PAAm-alginate hydrogel being stretched to several times its original length. Adapted from Sun et al. (2012).

1 As pointed out to us by an anonymous Reviewer, there is a very recent paper on this subject by Lu et al. (2017). However, this paper appeared in the literature
after we had submitted our paper for publication to JMPS.
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2. Some experimental results from mechanical tests on a DN hydrogel

2.1. Sample preparation

Samples of a PAAm-alginate double network (DN) hydrogel, and those of a single-network (SN) PAAm hydrogel were synthesized
as follows:

1. PAAm-alginate double-network hydrogel:

• Mixing 5.5 ml of 18.7 wt% acrylamide solution (Sigma, A8887) with 4.2 ml of 4.8 wt% alginate solution (Sigma, A2033).

• Then: (i) 900 μl 0.2 g/L N′N methylenebisacrylamide (Sigma, 146072); (ii) 108 μl 0.2 M ammonium persulphate (Sigma,
248614); and (iii) 8 μl N,N,N′,N′-tetramethylethylenediamine (Sigma, T7024–50M) were added into the above mixture.
Here: (i) N′N methylenebisacrylamide acts as the cross-linker (Sigma, 146072); (ii) ammonium persulphate (Sigma, 248614)
as the photoinitiator; and (iii) N,N,N′,N′-tetramethylethylenediamine (Sigma, T7024–50M) acts as the crosslinking accelerator
for the PAAm network.

• After degassing the mixture, 200 μl of 1 M CaSO4 was added into the mixture to crosslink the alginate network.

• The solution was then poured into a laser-cut plexiglass mold and cured with UV irradiation (254 nm wavlength, at 8.0 mW/
cm2) for 60 min.

• The samples were stored in a humid box for at least 10 h in order to homogenize them before any mechanical testing. All
specimens for mechanical testing were cut from the same piece of cured hydrogel in order to obtain consistent data.

2. PAAm single-network hydrogel: Additional samples with exactly the same composition as above, but without any calcium
sulphate were also made. In such samples the alginate system will not be ionically-crosslinked, but the polyacrylamide monomers
will be covalently-crosslinked to form a long chain network. We call such samples as “control” single-network (SN) samples.

2.2. Experiments

Simple tension experiments on sheet specimens with dimensions shown in Fig. 2a (thickness 1.5 mm) were conducted using a
Zwick-Roell mechanical testing machine with a 20N load cell. The axial stretch, λ, was measured by using a digital-image-correlation
(DIC) method, and this DIC-based measurement of the stretch was related to the relative displacement of the gripping lines “O” and
“A” (cf. inset in Fig. 2) at the shoulders of the specimens. Fig. 2(b) shows that the DIC-based stretch measurement in the gage section
of a specimen and the relative displacement at the grips are linearly related (the dashed line), for stretch rates in the range
λ ̇ ∈ [0.4, 35.3]/min. We used the calibration curve in Fig. 2b to construct the stretch-stress curves for all the data presented in this
paper.

Fig. 3a shows a representative engineering (Piola) stress S versus stretch λ curve for the SN hydrogel at a stretch rate of 8.8/min
during loading. We tested three specimens and the error-bars show the variability of the data for nominally identical specimens.
Fig. 3(b) shows representative loading-unloading S-λ curve for the DN hydrogel at a stretch rate of 8.8/min. Again, we tested three
specimens and the error-bars show the variability of the data for nominally identical specimens. The loading-unloading curve for the
DN hydrogel shows substantial hysteresis. This large hysteresis loop for the DN gel is a macroscopic manifestation of the breaking of
the ionic crosslinks in the alginate network which leads to dissipation; this represents a Mullins-type effect (Mullins, 1969). For
comparison the S-λ loading-unloading curve for the SN hydrogel is also shown in Fig. 3(b), but for the SN hydrogel the difference

Fig. 2. (a) Dimensions of sheet specimens for simple tension experiments; the specimens were 1.5 mm thick. The inset shows the white gage points used to measure
the axial stretch, λ, by using a digital-image-correlation (DIC) method. The horizontal lines at “O” and “A” in the shoulder region indicate where the specimens were
gripped at the shoulders of the dog-bone tension specimens. (b) The DIC-measured stretch at the center of the sample versus the relative displacement of the loading
grips at various stretch rates. The dashed line shows the linear relation between stretch and the relative displacement of the loading grips.
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between the loading and the unloading curves at a stretch rate of 8.8/min was less than 0.5 kPa; this small difference is not
discernable because of the stress-scale in Fig. 3(b). Additional experiments for the SN hydrogel, which are not reported here, show
that the difference between loading and unloading curves when the stretch rate was changed by a factor of ten was also less than
1 kPa. Thus relative to the S-λ response of the DN hydrogel, the S-λ response of the SN hydrogel may be idealized to be essentialy
rate-independent, and we shall make such an idealization in developing our constitutive theory.

Fig. 4a shows stress-stretch curves for the DN hydrogel at four different stretch rates λ ̇ ranging from 0.4/min to 35.3/min. Thus,
in addition to the striking Mullins-type effect, the DN hydrogel also shows a significant stretch-rate sensitivity. It is important to note

Fig. 3. (a) Representative stretch-stress response at a stretch rate of 8.8/min for the SN hydrogel. (b) Representative stretch-stress response at a stretch rate of 8.8/
min for DN as well as the SN hydrogels. The error-bars show the variability of the data for nominally identical specimens.

Fig. 4. Time-dependent mechanical behavior of DN hydrogel: (a) S versus λ response at stretch rates ranging from 0.4/min to 35.3/min. (b) S versus λ curves with

interrupted stress-relaxation experiments. (c) S t S t S S S( ) = ( ( ) − )/( (0) − )norm
def

∞ ∞ is essentially independent of the level of stretch in the range λ ∈ [1, 4.5] for a test

conducted at a nominal stretch rate of 8.8/min. (d) S t( )norm is dependent on the stretch-rate in the range λ ̇ ∈ [0.4, 35.3]/min.
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that while the S versus λ response is rate-sensitive during loading, the rate-sensitivity during unloading is small and almost
negligible. The rate-dependence of the loading portion of the curve arises mainly due to the kinetic rupturing of the ionically
crosslinked alginate network. As the sample is stretched the ionic bonds in the alginate network rupture, and the experiments show
that this energy dissipation mechanism is rate-dependent. In contrast, during unloading — that is, as the stretch is reduced — there
is no additional disruption of the alginate network, and therefore the unloading response is essentially rate-independent, an
assumption that we will adopt in our efforts at modeling the response of the DN hydrogel. Further, Fig. 4(a) shows that the DN
hydrogel also exhibits some permanent set upon unloading, but the permanent set is relatively small compared to the overall stretch
levels. In our efforts at modeling the response of DN hydrogels,we shall neglect the effects of such inelastic deformation. We leave an
inclusion of such effects to a future endeavor.

To further investigate the rate-sensitivity of the DN hydrogel we conducted sequential stress-relaxation experiments in which we
stretched the sample to various stretches λ = 1.44, 1.88, 2.32, 2.77, 3.22, 3.64, 4.10 and 4.5 at a given nominal stretch rate of 8.8/
min, interspersed with a hold period of 100 s, and also repeated the hold periods during unloading. This stretch history is shown
schematically in the inset of Fig. 4(b). This figure also shows the resulting S versus λ curve. Similar to the asymmetric rate sensitivity
discussed with respect to Fig. 4(a), the DN hydrogel shows stress-relaxation during loading, but not during unloading.

During each stretch-hold period of 100 s during the loading phase, the engineering stress S(t) gradually decreases to reach an
asymptotic value of S∞. Let

S t S t S
S S

( ) = ( ( ) − )
( (0) − )

,norm
def ∞

∞

denote a normalized value of S(t) during each stress-relaxation phase. We studied the variation of the normalized stress S t( )norm as
function of stretch at various stretch rates, and found that S t( )norm was essentially independent of the level of stretch in the range
λ ∈ [1, 4.5], cf. Fig. 4(c), but that it was very dependent on the stretch-rate in the range λ ̇ ∈ [0.4, 35.3]/min that we studied
experimentally, cf. Fig. 4(d).

Finally, to distinguish between the rate-dependent and the rate-independent aspects of the stress-stretch response of the DN
hydrogel we performed several tension tests on identical samples at various stretch rates in the range λ ̇ ∈ [0.4, 35.3]/min, with

Fig. 5. (a) S versus λ response for different stretch rates with relaxation holdings. The dashed line is identified as the equilibrium response of the material. (b)
viscoelasticity part of S-λ curves for different stretch rates. (c) Separating the response of the covalent network and the ionic network. (d) The complete response of the
ionic network.
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interrupted periods of stress-relaxation; cf. Fig. 5a. As shown in this figure, the engineering stress S during each hold period
decreases to a limiting value. These limiting values of stress at each stretch level represent a purely elastic — or an equilibrum
reponse — of the DN hydrogel. By subtracting this “equilibrium response” from the total stress S, we can obtain the purely rate-
dependent contribution to the stress in the DN hydrogel; this is shown in Fig. 5(b). Finally, by subtracting the S-λ curve for the SN
hydrogel, the dashed blue line (cf. Fig. 3a) from the “equilibrium response” (the solid black line), the elastic contribution from the
alginate network can be estimated; this is shown by the dash-dot red line in Fig. 5(c).2 Recall that the unloading response of the DN
hydrogel is essentially rate-independent. Thus by appending the unloading curves from various stretches to the dash-dot redline of
Fig. 5(c), the essentially rate-independent loading-unloading curves — showing a large Mullins-type effect — for the DN hydrogel
may be constructed, as shown in Fig. 5(d).

In summary, the DN hydrogel shows three major characteristic responses which are different from conventional elastomeric
materials:

(i) a large Mullins-type effect which manifests itself in hysteresis during loading and unloading;
(ii) an asymmetric rate-sensitive response during loading and unloading; and
(iii) a stretch-independent but stretch-rate dependent stress-relaxation behavior.

In Section 3 we summarize our large deformation viscoelasticity theory, and in Section 4 we specialize this theory to model the DN
hydrogel which we have studied experimentally in this section.

3. Theory

Our theory for the double network hydrogels is a specialized version of a more-general theory viscoelasticity theory based on a
Kröner-type multimechanism, multiplicative decomposition of the deformation gradient F of the form,

α MF F F= , = 1,…, ,e α v α( ) ( ) (3.1)

in which α indexes a micromechanism which governs the response of a multiple-network gel.3 Each micromechanism is
characterized by a constant (positive-valued scalar) volume fraction χ α( ) which satisfies the constraint,

∑ χ χ= 1 − ,
α

α( ) solv

(3.2)

where χ solv is a constant volume fraction of solvent in the gel.
Our theory, which is developed in detail in Appendix A, relates the following basic fields:4

χ tx X= ( , ), motion;
χ JF F= ∇ , = det > 0, deformation gradient;

C F F= ⊤ , right Cauchy-Green tensor;

B FF= ⊤, left Cauchy-Green tensor;

JF F F= , det = 1−1/3 , isochoric part of F;

C F F C= , det = 1⊤ , isochoric part of C;

B FF B= , det = 1⊤ , isochoric part of B;

C and B, list of principal invariants of C and B;

λ C B= tr /3 = tr /3 , effective distortional stretch;

χ X( )α( ) , volume fraction of the αth micromechanism/ “phase”;

α MF F F= = 1,…,e α v α( ) ( ) , multimechanism multiplicative decomposition of F;

JF F, = det = 1v α v α v α( ) ( ) ( ) , isochoric viscous distortion for the αth micromechanism;

JF F, = det > 0e α e α e α( ) ( ) ( ) , elastic distortion for the αth micromechanism;

J J= e α( );

C F F=e α e α e α( ) ( ) ⊤ ( ), elastic right Cauchy-Green tensors;

B F F=e α e α e α( ) ( ) ( ) ⊤, elastic left Cauchy-Green tensors;

JF F F= ( ) , det = 1e α e α e α e α( ) ( ) −1/3 ( ) ( ) , isochoric part of Fe α( );

2 Please refer to the online version of this article for color coding in various graphs.
3 A theory based on a decomposition of the form (3.1) has also been successfully used for modeling the behavior of glassy polymers, both below and above their

glass transition temperatures (cf., e.g., Boyce et al., 2000; Anand et al., 2009; Ames et al., 2009; Srivastava et al., 2010a, 2010b).
4 Notation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: ∇ and Div denote the gradient and divergence with

respect to the material point X in the reference configuration, and Δ = Div ∇ denotes the referential Laplace operator; grad, div, and divgrad denote these operators
with respect to the point χ tx X= ( , ) in the deformed body; a superposed dot denotes the material time-derivative. Throughout, we write F F= ( )e e−1 −1, F F= ( )e e−⊤ −⊤,
etc. We write Atr , Asym , Askw , A0, and Asym0 respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner
product of tensors A and B is denoted by A B: , and the magnitude of A by A A A| | = : .

Y. Mao et al. J. Mech. Phys. Solids 100 (2017) 103–130

108



C F F C= , det = 1e α e α e α e α( ) ( ) ⊤ ( ) ( ) , isochoric elastic right Cauchy-Green tensors;

Ce α( ), list of principal invariants of Ce α( );

F R U V R= =e α e α e α e α e α( ) ( ) ( ) ( ) ( ), polar decompositions of Fe α( );

λU r r= ∑ ⊗e α
i i

e α
i
e α

i
e α( )

=1
3 ( ) ( ) ( ), spectral decomposition of Ue α( );

λV l l= ∑ ⊗e α
i i

e α
i
e α

i
e α( )

=1
3 ( ) ( ) ( ), spectral decomposition of Ve α( );

λE r r= ∑ (ln ) ⊗e α
i i

e α
i
e α

i
e α( )

=1
3 ( ) ( ) ( ), logarithmic elastic strain;

λE R E R l l= = ∑ (ln ) ⊗e α e α e α e α
i i

e α
i
e α

i
e α

H
( ) ( ) ( ) ( ) ⊤

=1
3 ( ) ( ) ( ), spatial logarithmic elastic strain;

χT T= ∑α
α α( ) ( ), Cauchy stress;

JT F T F=e α e α e α α e α( ) ( ) ( )−1 ( ) ( )−⊤, elastic second Piola stress for the αth micromechanism;

M C T=e α e α e α( ) ( ) ( ), Mandel stress for the αth micromechanism;

JT TF=R
−⊤, Piola stress;

ψR, free energy density per unit reference volume.

Remark. A feature of the multimechanism Kroner-type decomposition F F F= e α v α( ) ( ) (with Fdet = 1v α( ) ) is that J J=e α( ) for all α. In
the specialized constitutive equations to be considered below, we will associate J with only one micromechanism, while all other
micromechanisms will be taken to be elastically and plastically isochoric.

In order to account for the microstructural changes that alter the number of crosslinks in the material during deformation, we
introduce a list M scalar internal variables, one for each micromechanism,

ξ ξ ξ
→

= { ,…, }.M(1) ( )

Also, to account for important aspects of the microstructural changes which result in changes in the resistance to viscous flow during
deformation we introduce another list

s s s→ = { ,…, }.M(1) ( )

We also limit our attention to situations under which the material may be idealized to be isotropic. Accordingly, all constitutive
functions considered below are presumed to be isotropic in character. Finally, when convenient, we shall use the shorthand

∑ ∑= ,
α α

M

=1 (3.3)

1. Free energy:
We assume a free energy in the separable form,

∑ψ χ ψ χ ψ ξ= + ( , ).
α

α α α
CR

solv
R
solv ( )

R
( ) ( )e α( )

(3.4)

Here, ψR
solv represents a constant free energy contribution from the solvent, and ψ α

R
( ) represents the contribution to the free

energy from the αth micromechanism, with Ce α( ) represents a list of the principal invariants of Ce α( ).
2. Elastic second Piola stress. Mandel Stress. Cauchy stress:

For each micromechanism the elastic second Piola stress is given by

ψ ξ
T

C
= 2

∂ ( , )
∂

,e α
α α

e α
C( ) R

( ) ( )

( )

e α( )

(3.5)

the symmetric Mandel stresses by

M C T= ,e α e α e α( ) ( ) ( ) (3.6)

and the contributions T α( ) to the Cauchy stress T (recalling that J J=e α( ) ) by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J

ψ ξ
T F

C
F= 2

∂ ( , )
∂

.α e α
α α

e α
e αC( ) −1 ( ) R

( ) ( )

( )
( ) ⊤e α( )

(3.7)

The total Cauchy stress χT T= ∑α
α α( ) ( ) is then given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ χ J

ψ ξ
T F

C
F= 2

∂ ( , )
∂

.
α

α e α
α α

e α
e αC( ) −1 ( ) R

( ) ( )

( )
( ) ⊤e α( )

(3.8)
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3. Evolution equation for Fv α( ):
The evolution equation for each Fv α( ) is

F D F F X 1̇ = , ( , 0) = ,v α v α v α v α( ) ( ) ( ) ( ) (3.9)

with the viscous stretching given by

⎛
⎝⎜

⎞
⎠⎟γ

τ
D

M
= ̇

2
,v α v α

e α

α
( ) ( ) 0

( )

( )
(3.10)

where

τ M= 1
2

| |α e α( ) def
0

( )

(3.11)

defines an equivalent shear stress for each α, and

γ Ḋ = 2 | |,v α v α( ) def ( ) (3.12)

is an equivalent viscous shear strain rate.
Let

Λ s ξC= ( , , )α e α α α( ) ( ) ( ) ( ) (3.13)

denote a list of constitutive variables. Then, for given τ α( ) and Λα( ), the equivalent viscous shear strain rate γ ̇v α( ) is obtained by
solving a scalar strength relation

Λτ Y γ= ( , ̇ ),α α α v α( ) ( ) ( ) ( ) (3.14)

where the strength function ΛY γ( ̇ , )α v α α( ) ( ) ( ) is an isotropic function of its arguments. We assume that

ΛY γ γ( ̇ , ) is a positive−valued strictly increasing function of ̇ ,α v α α v α( ) ( ) ( ) ( ) (3.15)

so that
(1) the viscous dissipation inequality

Y γ γ̇ > 0 for ̇ > 0,α v α v α( ) ( ) ( )

is satisfied, and that
(2) for each fixed Λα( ), the function ΛY γ( ̇ , )α v α α( ) ( ) ( ) is invertible.

Hence,

Λγ f τ̇ = ( , ) ≥ 0.v α α α α( ) ( ) ( ) ( ) (3.16)

4. Evolution equations for the internal variables ξ α( ) and s α( ):
We shall elaborate on evolution equations for the internal variables ξ α( ) and s α( ) when we specialize our constitutive theory in

Section 4.
5. Total dissipation rate:

The total rate of dissipation per unit reference volume is

∑ ∑χ Y γ χ
ψ ξ

ξ
ξ

C
= ̇ −

∂ ( , )
∂

̇ ≥ 0,
α

α α v α

α

α
α e α α

α
α( ) ( ) ( ) ( ) R

( ) ( ) ( )

( )
( )

(3.17)

with contributions from both the viscous dissipation and how the evolution of the internal variables ξ α( ) changes the free energy
of the body.

4. Specialization of the constitutive equations

The theory presented in the previous subsection is quite general. Here, in order to model the response of double-network gels, we
use three micromechanisms, α = 1, 2, 3. To fix ideas, Fig. 6 shows a rheological spring-dashpot model for the three micromechan-
isms model that we shall elaborate on below.

Specifically:

Y. Mao et al. J. Mech. Phys. Solids 100 (2017) 103–130

110



(i) The first micromechanism, α = 1, is taken to represent a covalently-crosslinked network with long chains.

• We limit our attention to circumstances under which the covalent crosslinks in this network do not to rupture; that is we do
not attempt to model fracture of the gel.

We also do not associate any viscous deformation with this network, and accordingly set F 1=v (1) .
(ii) The second and third micromechanisms, α = 2 and α = 3, are taken to together represent the ionically-crosslinked network

with short chains plus all intermolecular interactions. Accordingly, we set the volume fraction χ (3) to be equal to χ (2),

χ χ= ,(2) (3) (4.1)

with the sum of the two equal to the volume fraction of the ionic network in the double-network hydrogel. The ionic crosslinks,
which are conceptually represented by network α = 2, may rupture — resulting in distributed internal microdamage and
dissipation due to such microdamage, but we do not directly associate any viscous deformation with this network, and
accordingly set F 1=v (2) . That is, the micromechanism α = 2 will be used to model the rate-independent elastic response of the
short-chain network with a concommitant Mullins-type phenomena. All viscous effects in the material will be associated with
the third micromechanism, α = 3, which is presumed to also account for an elastic resistance due to intermolecular energetic
bond-stretching. Accordingly for this mechanism we prescribe a suitable evolution equation for Fv (3) to describe rate-dependent
dissipative phenomena.

Since F 1=v (1) and F 1=v (2) , by assumption, we have

C C C C= , = , and = , = .e e
C C C C

(1) (2)
e e(1) (2)

We take the free energy to be given in the separable form

ψ χ ψ χ ψ χ ψ ξ χ ψ ξ= + ( ) + ( , ) + ( , ).C C CR
solv

R
solv (1)

R
(1) (2)

R
(2) (2) (3)

R
(3) (3)e (3) (4.2)

That is, we assume that

• the free energies for the micromechanisms α = 1, 2 do not depend on the corresponding volumetric elastic contributions, and that
all volumetric elastic contributions are accounted for the in the free energy for the intermolecular mechanism labeled α = 3.

• Also, since the first micromechanism, α = 1, has been taken to represent a covalently-crosslinked network for which the crosslinks
are presumed not to rupture, we have assumed that the free energy for this micromechanism does not involve an internal variable
ξ(1), and depends only on the list of invariants C of C.

4.1. Constitutive equations for micromechanism α = 1
For the network with long chains in which the covalent crosslinks are presumed not to rupture and for which there is no viscous

flow, we take ψR
(1) to depend only on the first invariant of C,

I C= tr ,1

in the Gent (1996) form,

Fig. 6. Rheological model for double-network gels.
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⎛
⎝⎜

⎞
⎠⎟ψ C I I

I
= − 1

2
ln 1 − − 3 .m

m
R
(1) (1) (1) 1

(1)
(4.3)

Here,

C I> 0, ,m
(1) (1)

are two material parameters in which Im
(1) sets a bound on the maximum possible value of I1 (i.e., I I0 ≤ ( − 3)/ < 1m1

(1) ).
From (4.3) and (3.7) the contribution to the Cauchy stress form the first micromechanism is

⎛
⎝⎜

⎞
⎠⎟J G G C I

I
T B= , = 1 − − 3 ,

m

(1) −1 (1)
0

(1) def (1) 1
(1)

−1

(4.4)

with T(1) deviatoric.

Remark. As an alternative to the Gent form of the free energy (4.3), introducing an effective distortional stretch defined by

λ C= tr
3

,def

(4.5)

one may also use a free energy in the Arruda and Boyce (1993) form,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ψ G λ λ

λ
β β

β λ
β

β
β

= ( ) + ln
sinh

− 1 − ln
)

sinh
,L

L L
R
(1)

0
(1) (1) 2

(1)
(1)

(1)

(1) (1) 0
(1) 0

(1)

0
(1)

(4.6)

in which

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟G N k β λ

λ
β

λ
= ϑ, = , = 1 ,B

L L
0
(1) def (1) (1) def −1

(1) 0
(1) def −1

(1)
(4.7)

with −1 the inverse of the Langevin function x x x( ) = coth( ) − ( )−1. Here, (i) N (1) denote the number of polymer chains per unit

volume of the refrence configuration; (ii) n(1) the number of links per chain; and (iii) λL
(1) defined by λ n=L

(1) def (1) , the locking stretch
for the first network.

While the free energy (4.6) may appear to be more fundamentally motivated because it is based on statistical mechanical
considerations, there is a conceptual difficulty with using statistical-mechanical ideas here. This is because of the presence of the
second network, the chains in the first network do not have sufficient freedom to sample all possible molecular conformations, as
visualized in the statistical-mechanical models of rubber elasticity. It is for this reason that we employ a simple phenomenological
form for the free energy function due to Gent (1996). The Gent model has been shown to yield predictions for the stress-strain
response similar to the entropic-network model of Arruda and Boyce, by Boyce (1996).

4.2. Constitutive equations for micromechanism α = 2
The second micromechanism is taken to represent a portion of the response the ionically crosslinked network. We take ψR

(2) to
depend on I C= tr1 in the Gent (1996) form,

⎛
⎝⎜

⎞
⎠⎟ψ C I I

I
= − 1

2
ln 1 − − 3 ,m

m
R
(2) (2) (2) 1

(2)
(4.8)

with two material parameters

C I> 0 and ,m
(2) (2) (4.9)

in which Im
(2) sets a bound on the maximum possible value of I1 (i.e., I I0 ≤ ( − 3)/ < 1m1

(2) ).
The rupture of the ionic crosslinks leads to a stretch-softening phenomenon similar to the well-known Mullins effect (cf., e.g.,

Mullins, 1969) in natural and synthetic elastomers. Numerous models have been proposed to model such stretch-softening of
elastomeric materials (cf., e.g., Marckmann et al., 2002; Qi and Boyce, 2004; Chagnon et al., 2006; Cho et al., 2013, and the
references to the literature in these papers). Specifically, Marckmann et al. (2002) proposed that the Mullins effect was caused by the
disruption of the crosslinks in a network, and accordingly suggested that the microdamage process results in an increase in the mean
distance between crosslinks, i.e. the mean length of chains increases, and a concommitant decrease in the number of chains per unit
of volume. Guided by the physical ideas of Marckmann et al. (2002) and Chagnon et al. (2006), and the models of Boyce and co-
workers (Qi and Boyce, 2004; Cho et al., 2013) on network alteration, we construct a simple model for the microdamage processes
for the double-network hydrogels under consideration here.

Recall the definition Eq. (4.5) for the effective distortional stretch, viz.

λ C= tr
3

.def

(4.10)

Let
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λ t λ ζ( ) = max[ ( )]
ζ t

max
def

∈[0, ] (4.11)

represent the maximum effective distortional elastic stretch that the material has been locally subjected to over its history ζ t∈ [0, ].
Following Marckmann et al. (2002) we presume that microscale damage is actuated when the chains are stretched above the
maximum effective stretch ever applied to the network. To model the microdamage caused by the the disruption of the ionic
crosslinks, we take the internal variable ξ(2) to be identically equal to λmax ,

ξ λ≡ ,(2)
max (4.12)

and assume that the moduli C(2) and Im
(2) in (4.8) are functions of λmax of the form

C C f λ f I I g λ g= ( ) (1) = 1, = ( ), (1) = 1,m m
(2)

0
(2)

max
(2)

,0
(2)

max (4.13)

where C0
(2) and Im,0

(2) are the initial values of C(2) and Im
(2), with the functions f λ( )max and g λ( )max chosen such that C(2) decreases while

Im
(2) increases as λmax increases. Further we require that at any value of λmax ,

f λ g λ( ) ( ) ≡ 1.max max (4.14)

In particular, we assume that

f λ p p λ g λ p p λ( ) = ( + (1 − ) ) , ( ) = ( + (1 − ) ) ,q q
max max

−
max max (4.15)

with

p q> 0, > 0.

From (4.8) and (3.7) we find that the contribution to the Cauchy stress form the second micromechanism is

⎛
⎝⎜

⎞
⎠⎟J G G C I

I
T B= , with = 1 − − 3 ,

m

(2) −1 (2)
0

(2) def (2) 1
(2)

−1

(4.16)

with T(2) deviatoric.

4.3. Constitutive equations for micromechanism α = 3
For the intermolecular energetic bond-stretching interactions, instead of using the invariants Ce, recalling the spectral

representation

∑ ω ω λC r r= ⊗ with = ,e

i
i
e

i
e

i
e

i
e

i
e

=1

3
2

(4.17)

where r r r( , , )e e e
1 2 2 are the orthonormal eigenvectors of Ce and Ue, and λ λ λ( , , )e e e

1 2 3 are the positive eigenvalues of Ue, we take free energy
ψR to be alternatively expressed in terms of the principal stretches λ λ λ( , , )e e e

1 2 3 . Further, with

E λ= lni
e

i
edef

(4.18)

defining the principal values of the logarithmic elastic strain

∑ EE U r r= ln = ⊗ ,e e

i
i
e

i
e

i
edef

=1

3

(4.19)

we take the free energy in the form

ψ ψ E E E= ( , , ).e e e
R R 1 2 3 (4.20)

Thus, with Ee (3) the logarithmic elastic strain for the intermolecular mechanism α = 3 defined as above, we take ψR
(3) to be given in the

specific form (Anand, 1979, 1986),

⎡
⎣⎢

⎤
⎦⎥ψ ξ G E E E K G E E EE( , ) = (( ) + ( ) + ( ) ) + 1

2
( − (2/3) )( + + ) ,e e e e e e e

R
(3) (3) (3) (3)

1
(3) 2

2
(3) 2

3
(3) 2

1
(3)

2
(3)

3
(3) 2

(4.21)

where the parameters

G K> 0, > 0,(3) (4.22)

are the shear modulus and bulk modulus, respectively, possibly dependent on an internal varaible ξ(3); a dependence which we will
discuss shortly in what follows.

Using the relations given in Section 3, the Cauchy stress for micromechanism α = 3 is,

JT R M R= ( ) ,e e e e(3) (3) −1 (3) (3) (3) ⊤ (4.23)

with Me (3) the corresponding Mandel stress given by

G KM E E 1= 2 + (tr ) .e e e(3) (3)
0

(3) (3) (4.24)
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Substituting (4.24) in (4.23), and using J J=e (3) , we obtain

J G KT E E 1= (2 + (tr ) ),e e(3) −1 (3)
H0

(3)
H

(3) (4.25)

in which Ee
H

(3) is the spatial Hencky strain.
The evolution equation for Fv (3) is

F D F F X 1̇ = , ( , 0) = ,p v v v(3) (3) (3) (3) (4.26)

with the viscous stretching given by

⎛
⎝⎜

⎞
⎠⎟γ

τ
D

M
= ̇

2
,v v

e
(3) (3) 0

(3)

(3)
(4.27)

where

τ M= 1
2

| |e(3) def
0

(3)

(4.28)

defines an equivalent shear stress for viscous flow, with

γ f τ s ξĊ = ( , , ,
→

) ≥ 0,v e(3) (3) (3) (3) (3) (4.29)

an equivalent viscous shear strain rate.
The internal variable ξ(3): As stated earlier, to account for the complex Mullins-type effect and the rate-sensitive response of a

double-network hydrogel, the micromechanisms 2 and 3 are taken to interact. We account for such interactions by introducing a
parameter

φ ∈ [0, 1],

which represents a fraction of the extent of the damage in ionically-crosslinked network, as measured by λmax , and take ξ(3) to be
given by

ξ φλ= .(3) def
max (4.30)

This variable is in turn taken to affect the elasticity and the viscosity of the micromechanism α = 3. As ξ(3) increases or decreases, the
shear modulus,G(3), and the viscous flow resistance in shear, s(3), will be taken to increase or decrease. The evolution of φ depends on
the level λ , and whether λ ̇ is increasing or decreasing, as discussed below:

(i) If λ λ= max and λ ̇ > 0, a state we call “loading”, then φ is taken to evolve according to

φ A φ λ̇ = (1 − ) ̇, (4.31)

with A > 0 a constant. That is, under continued loading φ approaches unity, at a rate determined by A φ(1 − ), as the effective
stretch λ increases.

(ii) If λ λ= max and λ ̇ < 0, a state we call “unloading”, then φ is taken to evolve according to

φ A φλ̇ = ̇, (4.32)

so that φ ̇ is negative. Thus, under continued unloading, φ → 0 as the effective stretch λ decreases.
(iii) If λ λ< max and λ ̇ > 0, a state we call “reloading”, then φ is taken to evolve in manner similar to (4.31) but with the factor

φ(1 − ) replaced by π λ λ φ( ( , ) − )max , that is

φ A π λ λ φ λ̇ = ( ( , ) − ) ̇,max (4.33)

where π λ λ( , )max is a function of λ and λmax , with values in the range π λ λ( , ) ∈ [0, 1]max . The function π λ λ( , )max is presumed to
be a monotonically increasing function of λ until λ reaches the current value of λmax , at which point the evolution equation of φ
switches to case (4.31) discussed above. A particular form for π λ λ( , )max , which satisfies the requirement above is

⎛
⎝⎜

⎞
⎠⎟π λ λ λ

λ
( , ) = − 1

− 1
;max

max

2

(4.34)

we adopt it here.

To summarize, we take ξ φλ=(3)
max , with the fraction φ ∈ [0, 1] assumed to evolve according to

Y. Mao et al. J. Mech. Phys. Solids 100 (2017) 103–130

114



⎧

⎨
⎪⎪

⎩
⎪⎪

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

φ

A φ λ λ λ λ

Aφλ λ λ λ

A φ λ λ λ λ

̇ =

(1 − ) ̇ if = and ̇ > 0,
̇ if ≤ and ̇ < 0,

− ̇ if < and ̇ > 0,λ
λ

max

max

− 1
− 1

2

maxmax
(4.35)

with A > 0 a material parameter.
We assume that the bulk modulus K is large relative to G(3), and essentially unaffected by the internal variable ξ φλ=(3)

max , while
the shear modulus G(3) evolves according to

G G H φλ= + ( ) ,g
r(3)

0
(3)

max (4.36)

with G H r{ , , }g0
(3) all positive-valued parameters, so that G(3) increases or decreases as ξ φλ=(3)

max increases or decreases.
Further the equivalent viscous shear strain rate in (4.29) is taken in a simple power law form

⎛
⎝⎜

⎞
⎠⎟γ γ τ

s
̇ = ̇ ,v

m
(3)

0

(3)

(3)

1/

(4.37)

with γ0̇ a reference strain rate and m a strain-rate sensitivity parameter, and where

s s H φλ= + ( ) ,s
n(3)

0 max (4.38)

with s H n{ , , }s0 all positive-valued parameters, so that s(3) increases or decreases as ξ φλ=(3)
max increases or decreases.

Thus, the set of material parameters chosen to phenomenologically describe the intermolecular elastic-viscous response in our
theory are

K G H r γ m s H n A{ , , , , ̇ , , , , , }.g s0
(3)

0 0 (4.39)

5. Estimation of the material parameters in the theory

Using the information for sample preparation given in Section 2, and assuming that all solutions used in sample preparation have
the same molar volume, we estimate the volume fractions as

χ χ χ χ= 0.877; = 0.103; = = 0.010.solv (1) (2) (3) (5.1)

Idealizing the DN hydrogel to be completely incompressible, J=1, for simple extension in the e2 direction with respect to a
recantangular Cartesian coordinate system with coordinate directions e e e( , , )1 2 3 , the matrices of the deformation gradient F and the
Cauchy-Green tensors C and B are given by

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

λ
λ

λ

λ
λ

λ
F U V C B= = =

1/ 0 0
0 0
0 0 1/

, = =
1/ 0 0
0 0
0 0 1/

.
1/2

1/2

2

(5.2)

5.1. Elasticity of the micromechanism α = 1
Since the rotation in in simple extension is unity, R 1= , the principal values Si

(1) of the contribution to the Piola stress TR from
micromechanism α = 1 (under the assumption of complete incompressibility) are

⎛
⎝⎜

⎞
⎠⎟S G λ pλ G C I

I
= − , with = 1 − − 3 ,i i i

m

(1) (1) −1 (1) def (1) 1
(1)

−1

(5.3)

and p an arbitrary pressure. Thus, for simple extension characterized by (5.2),

S S G λ pλ S S G λ pλ0 = = = / − , ≡ = − .1
(1)

3
(1) (1) 1/2 1/2 (1)

2
(1) (1) −1 (5.4)

Eq. (5.4)1 gives p G λ= (1) −1, substitution of which in (5.4)2 gives the Piola stress S(1) in the e2-direction from the first
micromechanism as

⎛
⎝⎜

⎞
⎠⎟S G λ λ G C I

I
= ( − ) with = 1 − − 3 ,

m

(1) (1) −2 (1) def (1) 1
(1)

−1

(5.5)

where I λ λ= + 21
2 −1. The material parameters C(1) and Im

(1) in the generalized shear modulus G(1) were estimated by fitting the data
from Fig. 3(a) for the long-chain network. The fit displayed in Fig. 7, was obtained with

C I= 19.71 kPa, = 330.m
(1) (1) (5.6)

5.2. Elasticity with Mullins-type effect of micromechanism α = 2
As in the previous subsection the Piola stress S(2) in the e2-direction from the second micromechanism which represents the
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elasticity together with a Mullins-type effect from the short-chain network, is given by

⎛
⎝⎜

⎞
⎠⎟S G λ λ G C I

I
= ( − ) with = 1 − − 3 ,

m

(2) (2) −2 (2) def (2) 1
(2)

−1

(5.7)

where I λ λ= + 21
2 −1. Here C(2) and Im

(2) are two material functions which evolve according to Eqs. (4.13) and (4.15) to account for the
Mullins-type effect. Thus, we need to estimate four parameters C I p q{ , , , }m0

(2)
,0

(2) . These material parameters were estimated by fitting
the data in Fig. 5(d) for the short-chain network. The fit displayed in Fig. 8 was obtained with

C I p q= 840 kPa, = 4.3, = 0.196 and = 2.m0
(2)

,0
(2)

(5.8)

5.3. Viscoelastic response from micromechanism α = 3
Here, with
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λ
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−1/2 (5.9)

for simple tension, the matrices of components of Fe (3), Fv (3), and Dv (3) for an isotropic material are also diagonal,
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3 (5.10)

From the kinematical relations we obtain

λ λ d λ λ d λ λ d− 1
2

ln ̇ = ln ̇ + , ln ̇ = ln ̇ + , − 1
2

ln ̇ = ln ̇ + ,e v e v e v
1 1 2 2 3 3 (5.11)

and the deviatoric Mandel stress in the branch α = 3 then has the form

Fig. 7. Micromechanism α = 1: comparison of the fit of the model shown as a dashed line, against experimental data shown as points with error bars.

Fig. 8. Micromechanism α = 2: comparison of the fit of the model shown as a solid line, against experimental data shown as points.
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and correspondigly the viscous stretching is

⎛
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1/
0

(3)

(3)
(5.13)

with the elastic shear modulusG(3) and the shear resistance s(3) evolving according to Eqs. (4.30) and (4.38). The material paremeters
for the viscoelastic response from branch α = 3 (for an incompressible material) are G H r γ m s H n A{ , , , ̇ , , , , , }g s0

(3)
0 0 . These material

parameters were estimated by fitting the data in Figs. 4(c), (d) and (b). The fits shown in Fig. 9 and Fig. 10 were obtained using5

G H r γ m s H n A= 20 kPa, = 7048 kPa, = 1.3, ̇ = 1/s, = 0.22, = 20 kPa, = 2588 kPa, = 1.34, = 3.g s0
(3)

0 0 (5.14)

Fig. 9 shows the rate-dependent contribution during the monotonic loading at different stretch rates. The filled dots represent the
experimental data, while the solid lines are the model fits. Our model captures the major features of the rate-dependent response of
the material.

Fig. 10 displays the stress-relaxation response of the material. Specifically, Fig. 10(a) shows the stress-relaxation behavior at
different stretch levels for a test conducted at a stretch rate of 8.8/min. In accord with the experimental data in Fig. 4(c), the model
shows a weak stretch-dependence of the relaxation behavior. Fig. 10(b) shows the stress-relaxation behavior at different stretch
rates. Our model captures the major features of the complex stress-relaxation response of the material.

Fig. 9. The rate-dependent response of the DN hydrogel at different stretch rates during the monitonic loading. The filled dots represent the experimental data, while
the solid lines are the model fits.

Fig. 10. Stress-relaxation response: (a) At different stretch levels for a test conducted at a nominal stretch rate of 8.8/min — a weak stretch-dependence
(experimental data is not shown here). (b) At different stretch rates — a strong stretch-rate dependence. The solid lines represent the experimental data, while the
dashed lines are the model fits.
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5.4. Overall response

The overall mechanical response predicted by our model in simple extension experiments is shown in Fig. 11. Specifically,
Fig. 11(a) shows the predictions of model for stretching without holding at four different stretch rates.6 While Fig. 11(b) shows the
cyclic loading response at a nominal stretch rate 8.8/min, with intermittent holding. Overall, our model captures all the major
features of the large deformation viscoelastic response of the DN hydrogel with reasonable accuracy. Recall, that in our model we
have neglected the small rate-sensitivity of the unloading response, as well the small permanent set exhibited by the material.

The considerations so far have been to calibrate the material parameters of the theory from specimens deformed in simple
extension. In the next section we test the response of the constitutive model in the very different mode of simple shear.

6. Simple shear

We have conducted an approximate “simple-shear” experiment on a specially-prepared double-shear specimen of the hydrogel;
cf. Fig. 12 for a schematic of the experiment. The two gage sections of our double-shear specimen each had a widthW = 40 mm and a
height H = 10 mm. The thickness of the sample through the plane of the paper was t = 6.375 mm.

Fig. 13 shows two snapshots from the experiment: Fig. 13(a) shows the reference double-shear geometry, and Fig. 13(b) shows
the deformed geometry after a large amount of shear. Note that this experimental geometry does not result in precise homogeneous
simple shearing of the two gage sections, but only approximates such an ideal experiment.

In order to calculate a nominal shear-stress versus shear strain curve, the relevant cross-sectional area is A W t= × , and the
nominal shear stress is S F A= / , where F is the force measured by the load cell of the testing machine. The nominal shear strain is
γ d H= / , with d is the imposed displacement of the crosshead in the horizontal direction. The nominal shear strain rate in our

Fig. 11. Comparison between experiments and model for: (a) Cyclic loading without holding to a stretch 4.5 at various stretch rates. The dashed lines represent the
results from the model. For clarity the corresponding experimental results are shown only as error bars so as not to crowd the figure. (b) Cyclic loading with holding at
a stretch rate 8.8/min; the dashed line represents the result from the model, and the solid line the corresponding experimental result.

5 Since γ0̇ and s(3) cannot be fit separately, we have chosen a refrence shear rate of γ ̇ = 1/s0 .
6 The numerically calculated stress-stretch results in Fig. 11(a) are slightly higher than the data shown as error bars for each stretch rate. We attribute this

variability to the variability in the initial state of the double-network gel specimens — a variability which is difficult to control.
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experiment was γ ̇ = 0.1/s, and also at each shear strain of γ n= 0.5 , where n is an integer, the sample was held for 25s in order to
measure its stress-relaxation response.

In order to model the inhomogeneous deformation in this experiment, we implemented our constitutive model as a UMAT in
ABAQUS/Standard (2014), and used this capability to conduct a simulation of the approximate simple shear experiment described
above. Fig. 14(a) shows the finite element mesh,7 and Fig. 14(b) shows the deformed mesh at a nominal shear strain of γ = 1.5,
together with contours of the maximum effective stretch λmax .

Fig. 15 shows the experimentally-measured nominal shear stress versus nominal shear strain curve from the double-shear
experiment (with intermittent hold during loading) as the solid line. The numerically calculated result is shown as the dashed line; it
matches the experimental measurement quite well.

Finally we show a comparison between the experimentally-measured shapes of the gage section of the double-shear specimen
and the corresponding shapes predicted by the numerical simulation in Fig. 16, at nominal shear strains of γ = 1.5 and γ = 3.0. In
these figures, the dashed lines represent the simulated geometry, while the solid lines represent the experimentally-measured
profiles. There is very good agreement between the experimentally-measured profiles and the numerically predicted profiles.

7. Concluding remarks

• We have conducted a set of pedigreed experiments on a double-network hydrogel which consists of a covalently-crosslinked
polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. This double-network
hydrogels shows three major characteristic responses which are different from conventional hydrogels:
(i) a large Mullins-type effect which manifests itself in hysteresis during loading and unloading;
(ii) an asymmetric rate-sensitive response during loading and unloading; and
(iii) a stretch-independent but stretch-rate dependent stress-relaxation behavior.

• We have developed a new large deformation viscoelasticity model to represent the complex mechanical response of this hydrogel,
and presented a methodology for estimating the material parameters which appear in a specialized of set constitutive equations
for the theory.

• We have shown that with suitably calibrated material parameters, the constitutive model can reproduce — with reasonable

Fixeed

grip

W H
F,d

Fig. 12. Schematic of the double-shear experiment.

Fig. 13. Double-shear experiment (a) reference configuration; (b) deformed configuration.

Fig. 14. Simulation of the simple shear experiment: (a) Undeformed mesh. (b) Deformed mesh at a nominal shear strain of γ = 1.5 The contours of the maximum

effective stretch are also shown.
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accuracy — the experimentally-measured response of the material in not only large simple extension experiments, but also large
(nominal) simple shearing experiments.

• We believe that the constitutive theory presented in this paper should be useful to model the response of other similar hydrogels.8

As noted earlier, our model is restricted in the sense that in this study we limited our attention to conditions under which
diffusion of the water in the hydrogel may be neglected. However, this condition does not hold in general, and what is needed is a
coupled deformation-diffusion theory to model the complete response of this and other similar hydrogels. Also, the eventual fracture
of such double-network hydrogels needs to be modeled. We leave such work to a future endeavor.
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Appendix A. Detailed derivation of the theory

A.1. Basic kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a fixed reference configuration, and
denote by X an arbitrary material point of B. A motion of B is then a smooth one-to-one mapping χ tx X= ( , ) with deformation
gradient, velocity, and velocity gradient given by

χ χF v L v FF= ∇ , = ̇ , = grad = ̇ .−1 (A.1)

We base our theory on a multiplicative decomposition of the deformation gradient

α MF F F= = 1,…, .e α v α( ) ( ) (A.2)

Fig. 15. Nominal shear stress versus nominal shear strain curve for double shear experiment with intermittent hold during loading. The experimental result is shown
as the solid line, and the numerically calculated result is shown as the dashed line.

Fig. 16. Comparison of experimentally-measured and the numerically predicted shapes of the nominal “simple”-shear experiment, at shear strains of γ = 1.5 (a) and

γ = 3.0 (b). The dashed lines represent the simulated geometry, while the solid lines represent the experimentally-measured profiles.

7 This was a 3-D calculation using 800, C3D8H-ABAQUS elements in the plane of the paper, and one element through the thickness.
8 As noted earlier in footnote 1, after we had submitted our paper for publication on November 18, 2016, a paper by Lu et al. (2017), which is on the same topic as

our paper, has appeared online on November 22, 2016 in the ASME Journal of Applied Mechanics. Although the paper by these authors adresses the formulation of a
constitutive model for soft materials which incorporates viscoelasticity and Mullins effect, as we do here, the details of the model in the paper by Lu et al. (2017) differ
in many important respects from the one presented here. The differences are too numerous to discuss in detail, but we do note that these authors limit their attention
to homogeneous deformations, formulate a model in principal stretch space, and fit their model to data in simple tension. Their model is not fully three-dimensional
in nature, and it is unclear — and they have not shown — whether their model has validity for modes of deformation other than simple tension. Also, they have not
implemented their model numerically in a finite element program, as we have reported in our paper.
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We refer to Fv α( ) and Fe α( ) as the viscous, and elastic distortions, respectively.
As is standard, we assume that

J F= det > 0,def
(A.3)

and hence, using (A.2),

J J J= .e α v α( ) ( ) (A.4)

We assume that

J JF F= det > 0, and = det > 0,e α e α v α v α( ) def ( ) ( ) def ( ) (A.5)

so that Fe α( ), Fv α( ) and Fs are invertible.
Thus, suppressing the argument t for each micromechanism indexed by α,

• F X( )v α( ) represents the local inelastic distortion of the material at X due to a “viscous mechanism” such as the relative chain
slippage of the long-chain polymer molecules. This local deformation carries the material into — and ultimately “pins” the
material to — a coherent structure that resides in the intermediate space as represented by the range of F X( )v α( ) ;

• F X( )e α( ) represents the subsequent stretching and rotation of this coherent structure, and thereby represents the corresponding
“mechanical” or “elastic” distortion, such as stretching of the long-chain polymer molecules and stretching of the intermolecular
bonds.

A.1.1. Polar decompositions
The right and left polar decomposition of F is given by

F RU VR= = , (A.6)

where R is a rotation (proper orthogonal tensor), while U and V are symmetric, positive-definite tensors with

U F F V FF= , = .⊤ ⊤ (A.7)

Also, the right Cauchy-Green tensor is given by

C U F F B V FF= = , = = .2 ⊤ 2 ⊤ (A.8)

Similarly, the right and left and polar decompositions of Fe α( ) are given by

F R U V R= = ,e α e α e α e α e α( ) ( ) ( ) ( ) ( ) (A.9)

where Re α( ) is a rotation (proper orthogonal tensor), while Ue α( ) and Ve α( ) are symmetric, positive-definite tensors with

U F F V F F= , = .e α e α e α e α e α e α( ) ( ) ⊤ ( ) ( ) ( ) ( ) ⊤ (A.10)

Also, the right and left elastic Cauchy-Green tensors are given by

C U F F B V F F= = , = = .e α e α e α e α e α e α e α e α( ) ( )2 ( ) ⊤ ( ) ( ) ( )2 ( ) ( ) ⊤ (A.11)

A.1.2. Velocity gradient
Next, by (A.1)3 and (A.2),

L L F L F= + ,e α e α v α e α( ) ( ) ( ) ( )−1 (A.12)

with

L F F L F F= ̇ , = ̇ .e e α e α v α p α v α( ) ( )−1 ( ) ( ) ( )−1 (A.13)

As is standard, we define the total, elastic, viscous and swelling stretching and spin tensors through

⎫
⎬⎪
⎭⎪

D L W L
D L W L
D L W L

= sym , = skw ,
= sym , = skw ,
= sym , = skw ,

e α e α e α e α

v α v α v α v α

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
(A.14)

so that L D W= + , L D W= +e α e α e α( ) ( ) ( ), and L D W= +v α v α v α( ) ( ) ( ). Next, we make two basic kinematical assumptions concerning
viscous flow:

(i) First, we make the standard assumption that viscous flow is incompressible, so that

J F L D= det = 1 and tr = tr = 0.v α v α v α v α( ) ( ) ( ) ( ) (A.15)

(ii) Hence, using (A.4), we note that
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J J α= for all .e α( ) (A.16)

(iii) Next, from the outset we constrain the theory by limiting our discussion to circumstances under which the material may be
idealized as isotropic. For isotropic elastic-viscous theories utilizing the multiplicative decomposition of F, it is widely assumed
that the viscous flow is irrotational (cf., e.g., Gurtin et al., 2010, Section 97) in the sense that

W 0= .v α( ) (A.17)

Then, L D≡v α v α( ) ( ) and

F D Ḟ = .v α v α v α( ) ( ) ( ) (A.18)

Further, on account of (A.17), the relation (A.12) reduces to

L L F D F= + .e α e α v α v α( ) ( ) ( ) ( )−1 (A.19)

Finally, using (A.1) and (A.3)2 we may write (A.19), for future use, as

χ F F F F D F(∇ ̇ ) = ̇ + .e α e α e α v α e α−1 ( ) ( )−1 ( ) ( ) ( )−1 (A.20)

A.2. Frame-indifference

A change in frame, at each fixed time t, is a transformation — defined by a rotation tQ( ) and a spatial point ty( ) — which
transforms spatial points x to spatial points:

t tx x y Q x o* = ( ), = ( ) + ( )( − ), (A.21)

with o a fixed spatial origin. The function thus represents a rigid mapping of the observed space into itself.
By (A.21) the transformation law for the motion χ tx X= ( , ) has the form

χ χt t t tX y Q X o* ( , ) = ( ) + ( )( ( , ) − ). (A.22)

Hence the deformation gradient F transforms according to

F QF* = , (A.23)

and

C is invariant. (A.24)

• Since frame changes only involve the observed space, the reference space and the local intermediate spaces (which are the ranges
of F X( )v α( ) ) are independent of the choice of a change in frame.

Thus

F are invariant under a change in frame.v α( ) (A.25)

This observation, (A.2) and (A.23) yield the transformation law

F QF* = .v α e α( ) ( ) (A.26)

Also, using (A.13), (A.14) and (A.25),

D is invariant,v α( ) (A.27)

and, by (A.13)1,

L QL Q QQ* = + ̇ ,e α e α( ) ( ) ⊤ ⊤

and hence

D QD Q W QW Q QQ* = , * = + ̇ .e α e α e α e α( ) ( ) ⊤ ( ) ( ) ⊤ ⊤ (A.28)

Further, by (A.9),

QF QR U QV Q QR= = ,e α e α e α e α e α( ) ( ) ( ) ( ) ⊤ ( )

and we may conclude from the uniqueness of the polar decomposition that

R QR V QV Q U* = , * = , are invariant.e α e α e α e α e α( ) ( ) ( ) ( ) ⊤ ( ) (A.29)

In addition, on account of the definition (A.11) of Ce α( ) and (A.26),
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C are also invariant.e α( ) (A.30)

A.3. Principle of virtual power. Balance of forces

The power expended on a part P by material or bodies exterior to P results from a macroscopic surface traction t n( )R R , measured
per unit area in the reference body, and amacroscopic body force bR, measured per unit volume in the reference body, each of whose
working accompanies the macroscopic motion of the body. The body force bR is assumed to include inertial body force,

χρb b= − ¨ ,R 0R R (A.31)

where b0R is the conventional body force. We therefore write the external power as

∫ ∫χ χda dvt n b(P) = ( )· ̇ + · ̇ .ext
∂P

R R R
P

R R (A.32)

Here, t n( )R R and bR are defined over the body for all time.
Next, we assume that power is expended internally by elastic stresses Se α( ) power-conjugate to Ḟe α( ), and viscous stresses Tv α( )

that expend power over the viscous stretchings Dv α( ), and we write the internal power as

∫ ∑ χ dvS F T D(P) = ( : ̇ + : ) ,
α

α e α e α v α v α
int

P
( ) ( ) ( ) ( ) ( )

R
(A.33)

Here, Se α( ) and Tv α( ) are defined over the body for all time. We assume that the stresses Tv α( ) are symmetric and deviatoric, since Dv α( )

are symmetric and deviatoric. Also, each χ α( ) is a constant positive-valued scalar fraction reflecting a contribution to the internal
power from each micromechanism α. The fractions χ α( ) are presumed to satisfy the constraint

∑ χ χ= 1 − ,
α

α( ) solv

(A.34)

where χ solv is a constant volume fraction of solvent in the gel, with the solvent assumed to have no contribution to the internal
power expenditure.

Assume that, at some arbitrarily chosen but fixed time, the fields χ , F, Fe α( ), and Fv α( ), are known, and consider the fields χ ̇ , Ḟe α( ),
and Dv α( ) as virtual velocities to be specified independently in a manner consistent with (A.20). That is, denoting the virtual fields by

χ∼, F∼e α( )
, and D∼v α( )

to differentiate them from fields associated with the actual evolution of the body, we require that

χ F F F F D F(∇ ̇ ) = + .∼ ∼e α e α e α v α e α−1 ( ) ( )−1 ( ) ( ) ( )−1 (A.35)

Further, we define a generalized virtual velocity to be a list

χ F D= ( , , ),∼∼ ∼e α v α( ) ( )

consistent with (A.35).

Remark. We refer to a macroscopic virtual field as rigid if it satisfies

χ Ω ΩF FF F F(∇ ) ≡ = ⟹ = ,∼ ∼∼ −1 −1 (A.36)

with Ω a spatially constant skew tensor, together with

ΩF F D 0= , and = .∼ ∼e α e α v α( ) ( ) ( )
(A.37)

Writing

⎫
⎬⎪
⎭⎪

∫ ∫

∫

χ χda dv

χ dv

t n b

S F T D

(P, ) = ( )· + · ,

(P, ) = ∑ ( : + : ) ,∼

∼ ∼

∼
α

α e α e α v α v α

ext ∂P R R R P R R

int
P

( ) ( ) ( ) ( ) ( )
R

(A.38)

respectively, for the external and internal expenditures of virtual power, the principle of virtual power consists of two basic
requirements:

(1) (Power Balance) Given any part P,

(P, ) = (P, ) for all generalized virtual velocities .ext int (A.39)

(2) (Rigid motion hypothesis) Given any part P and a rigid virtual velocity ,

(P, ) = 0 whenever is a rigid macroscopic virtual velociy.int (A.40)
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Next, to deduce the consequences of the principle of virtual power. Assume that (A.35) and (A.36) are satisfied; in applying the
virtual balance we are at liberty to choose any consistent with the constraint (A.33).

A.3.1. Macroscopic force and moment balances

Let D = 0∼v α( )
so that χF F= (∇ )∼ ∼e α v α( ) ( )−1. For this choice of , (A.35) yields

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∫ ∫ ∫∑ ∑χ χ χda dv χ dv χ dvt n b S F S F( )· + · = : = : ∇ ,∼∼ ∼ ∼

α

α e α e α

α

α e α v α
∂P

R R R
P

R R
P

( ) ( ) ( )
R

P
( ) ( ) ( )−⊤

R
(A.41)

which, by defining

∑ χT S F= ,
α

α e α v α
R

def ( ) ( ) ( )−⊤

(A.42)

may be rewritten as

∫ ∫χ χ χda dvt n T b( )· = ( : ∇ − · ) ,∼ ∼ ∼
∂P

R R R
P

R R R (A.43)

and using the divergence theorem we may conclude that

∫ ∫χ χda dvt n T n T b( ( ) − )· + (Div + )· = 0.∼ ∼
∂P

R R R R R
P

R R R

Since this relation must hold for all P and all χ∼, standard variational arguments yield the traction condition

t n T n( ) = ,R R R R (A.44)

and the local macroscopic force balance

T b 0Div + = ,R R (A.45)

respectively.
Next, we deduce the consequences of requirement (V2) of the principle of virtual power. Using (A.36), (A.37), (A.42) and (A.38)2,

requirement (V2) of the principle of virtual power leads to the requirement that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

∫ ∫ ∫

∫ ∫

∑ ∑ ∑

∑

Ω Ω Ω

Ω Ω

χ dv χ dv χ dv

χ dv dv

S F S F S F F F

S F F T F

0 = : ( ) , = ( ): , = ( ) : ,

= : , = ( ): .

α

α e α e α

α

α e α e α

α

α e α e α

α

α e α v α

P
( ) ( ) ( )

R
P

( ) ( ) ( ) ⊤
R

P
( ) ( ) ( ) ⊤ −⊤ ⊤

R

P
( ) ( ) ( )−⊤ ⊤

R
P

R
⊤

R
(A.46)

Since P is arbitrary, we obtain that ΩT F( ): = 0R
⊤ for all skew tensors Ω, which implies that T FR

⊤ is symmetric:

T F FT= .R
⊤

R
⊤ (A.47)

• Thus, the stress TR represents the classical Piola stress, with (A.45) and (A.47) representing the local macroscopic force and
moment balances in the reference body.

As is standard, the Piola stress TR is related to the symmetric Cauchy stress T in the deformed body by

JT TF= ,R
−⊤ (A.48)

so that

JT T F= .−1
R

⊤ (A.49)

Thus, using (A.42) and F F F=e α v α( ) ⊤ ( )−⊤ ⊤,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑J χ χ JT S F F S F= ,= ( ),

α

α e α v α

α

α e α e α−1 ( ) ( ) ( )−⊤ ⊤ ( ) −1 ( ) ( ) ⊤

(A.50)

and hence the Cauchy stress admits the additive decomposition

∑ χT T= ,
α

α α( ) ( )

(A.51)

where

JT S F= .α e α e α( ) def −1 ( ) ( ) ⊤ (A.52)

Since T is symmetric, we assume that each T α( ) is symmetric.
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As is standard, the macroscopic force balance (A.45) in the deformed body takes the form

T b 0div + = , (A.53)

where

χJ ρ ρb b b v= ( − ¨ ) ≡ − ̇−1
0R 0 0

is the body force per unit volume of the deformed body. Here, b0 is the body force per unit volume of the deformed body, ρ the mass
density in the deformed body, and v̇ the spatial description of the acceleration.

A.3.2. Some new stress measures
It is convenient to introduce three new stress measures:

• The second Piola stress

JT F T F TF= = ,RR
def −1

R
−1 −⊤ (A.54)

which is symmetric.

• The elastic second Piola stresses

JT F T F= ,e α e α e α α e α( ) def ( ) ( )−1 ( ) ( )−⊤ (A.55)

which is symmetric on account of the symmetry of the stress T α( ).

• The Mandel stresses

JM C T F T F= = ,e α e α e α e α e α α e α( ) def ( ) ( ) ( ) ( ) ⊤ ( ) ( )−⊤ (A.56)

which in general are not symmetric.

From (A.52)1 and (A.16),

JS T F= ,e α e α α e α( ) ( ) ( ) ( )−⊤ (A.57)

which in general are not symmetric. Note that the stress measure Se α( ) is the counterpart of the standard “first Piola stress” with
respect to the intermediate space for each α.

Hence, using the (definitions (A.55) and A.56), we find using (A.57) that

F S F S Mand = .e α e α e α e α e α( )−1 ( ) ( ) ⊤ ( ) ( ) (A.58)

The standard transformation rules for the Piola stress TR and the Cauchy stress T under a change in frame are

T QT T QTQ* = , * = ,R R
⊤ (A.59)

while

T is invariant.RR (A.60)

because of (A.59)2

T QT Q* = .α α( ) ( ) ⊤ (A.61)

Further, on account of the transformation rule (A.26) for Fe α( ), and the transformation rule (A.61), the elastic second Piola stresses
and the Mandel stresses are invariant under a change in frame,

T T M M* = and * = .e α e α e α e α( ) ( ) ( ) ( ) (A.62)

A.3.3. Microscopic force balances
To discuss the microscopic counterparts of macroscopic force balance, consider first a generalized virtual velocity with χ 0=∼ ,

choose the virtual field D∼v α( )
arbitrarily, and let

F F D= − .∼ ∼e α e α v α( ) ( ) ( )

Thus

( ) ( )S F F S D M D: = − ( ): = − sym :∼ ∼ ∼e α e α e α e α v α e α v α( ) ( ) ( ) ⊤ ( ) ( )
0

( ) ( )
(A.63)

where we have used (A.58)2 and the fact that D∼v α( )
is symmetric and deviatoric. The power balance (A.39) and (A.63) yield the

microscopic virtual-power relation

( )∫ ∑ χ dvT M D0 = − sym ∼

α

α v α e α v α

P
( ) ( )

0
( ) ( )

R
(A.64)
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to be satisfied for all D∼v α( )
and all P. This yields the microscopic force balances

M Tsym = ,e α v α
0

( ) ( ) (A.65)

which characterizes the interaction between internal forces associated with the elastic and viscous response of the material.
Finally, using the traction condition (A.44), the actual external expenditure of power is

∫ ∫χ χda dvT n b(P) = ( )· ̇ + · ̇ .ext
∂P

R R R
P

R R (A.66)

Next, differentiating (A.11)1 results in the following expression for the rate of change of C,

C F F F Ḟ = ̇ + ̇ .e α e α e α e α e α( ) ( ) ⊤ ( ) ( ) ⊤ ( )

Hence, since Te α( ) is symmetric,

T C T F F F T F: ̇ = 2 : ̇ = 2( ): ̇ ,e α e α e α e α e α e α e α e α( ) ( ) ( ) ( ) ⊤ ( ) ( ) ( ) ( )

and upon using (A.58)1, the stress power S F: ̇e α e α( ) ( ) may be alternatively written as

S F T C: ̇ = 1
2

: ̇ .e α e α e α e α( ) ( ) ( ) ( )
(A.67)

Thus the corresponding internal expenditure of power may be written as

⎛
⎝⎜

⎞
⎠⎟∫ ∑ χ dvT C T D(P) = 1

2
: ̇ + : .

α

α e α e α v α v α
int

P
( ) ( ) ( ) ( ) ( )

R
(A.68)

A.4. Balance of energy. Entropy imbalance. Free energy imbalance

Our discussion of thermodynamics involves the following fields:εRthe internal energy density per unit reference volume,ηRthe
entropy density per unit reference volume,qRthe heat flux per unit reference area,qRthe external heat supply per unit reference
volume,ϑthe absolute temperature (ϑ > 0), For a material region P, we take the balance law for energy as (Gurtin et al., 2010)

∫ ∫ ∫ε dv da q dvq n
̇

= − · + + (P).
P

R R
∂P

R R R
P

R R ext (A.69)

Also, the second law takes the form of an entropy imbalance

∫ ∫ ∫η dv da
q

dv
q ṅ

≥ −
·
ϑ

+
ϑ

.
P

R R
∂P

R R
R

P

R
R (A.70)

Assume now that isothermal conditions prevail, so that

ϑ ≡ constant,

and introduce the Helmholtz free energy per unit reference volume defined by

ψ ε η= − ϑ .R R R (A.71)

Then, upon multiplying the entropy imbalance (A.70) by ϑ and subtracting the result from the energy balance (A.69) yields the
free energy imbalance

∫ ψ dv
̇

≤ (P).
P

R R ext (A.72)

We henceforth restrict attention to isothermal processes and for that reason base the theory on the free energy imbalance (A.72).
Thus, since (P) = (P)ext int , upon recalling (A.68) and applying the divergence theorem to the term in (A.72) involving an

integral over the boundary ∂P of P, we obtain

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∑ ∑ψ χ χ dvT C T Ḋ − (1/2) : ̇ − : ≤ 0,

α

α e α e α

α

α v α v α
P

R
( ) ( ) ( ) ( ) ( ) ( )

R
(A.73)

and using the fact that (A.73) must hold for all parts P, gives the local form of the free energy imbalance as

∑ ∑ψ χ χT C T Ḋ − (1/2) : ̇ − : ≤ 0.
α

α e α e α

α

α v α v α
R

( ) ( ) ( ) ( ) ( ) ( )

(A.74)

For later use we define the dissipation density ≥ 0 per unit volume per unit time by

∑ ∑χ χ ψT C T D= (1/2) : ̇ + : − ̇ ≥ 0.
α

α e α e α

α

α v α v α( ) ( ) ( ) ( ) ( ) ( )
R

(A.75)

Note that with the invariance properties discussed previously, all quantities in (A.74) and (A.75) are invariant under a change in frame.
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A.5. Constitutive theory

We limit our attention to situations under which the material may be idealized to be isotropic. Accordingly, all constitutive
functions considered below are presumed to be isotropic in character.

A.5.1. Energetic constitutive equations
We introduce the notation

C C C
→

= { ,…, },e e e M(1) ( )

to represent the set of all Ce α( ), and in order to account for the microstructural changes that alter the number of the ionic or covalent
crosslinks in the material during deformation we introduce a list M scalar internal variables ξ α( ), one for each micromechanism α,

ξ ξ ξ
→

= { ,…, }.M(1) ( )

Guided by the free energy imbalance (A.74) we first consider constitutive equations for the free energy ψR and the stresses Te α( ) of the
form

⎪

⎪⎫⎬
⎭

ψ χ ψ χ ψ ξ

ξ

C

T T C

= + ∑ ( , ),

= ( , ).
α

α α e α α

e α e α e α α

R
solv

R
solv ( )

R
( ) ( ) ( )

( ) ( ) ( ) ( ) (A.76)

Here, ψR
solv is the contribution to free energy due to presence of the solvent, which we have presumed to be constant, and

ψ ξC( , )α e α α
R
( ) ( ) ( ) represent the mechanical contribution to the free energy from the different micromechanisms.
Substituting the constitutive equations (A.76) into the free-energy imbalance (A.74), we find that it may then be written as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑ ∑χ

ψ ξ
ξ χ

ψ ξ
ξ

ξ χ
C
C

T C C
C

T D
∂ ( , )

∂
− 1

2
( , ) : ̇ +

∂ ( , )
∂

̇ − : ≤ 0.
α

α
α e α α

e α
e α e α α e α

α

α
α e α α

α
α

α

α v α v α( ) R
( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) R

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

(A.77)

We assume that — constitutively — the stresses Tv α( ) are independent of Ċe α( ); thus, since these rates appear linearly in inequality
(A.77), this inequality can hold for all values of Ċe only if the stressses Te α( ) are given by the constitutive realtions

ψ ξ
T

C
C

= 2
∂ ( , )

∂
,e α

α e α α

e α
( ) R

( ) ( ) ( )

( ) (A.78)

and we are left with the following reduced dissipation inequality

∑ ∑χ
ψ ξ

ξ
ξ χ

C
T D= −

∂ ( , )
∂

̇ + : ≥ 0.
α

α
α e α α

α
α

α

α v α v α( ) R
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

(A.79)

To rule out trivial cases, we assume that the following dissipation inequalities

ψ ξ
ξ

ξ
C

T D−
∂ ( , )

∂
̇ ≥ 0, : ≥ 0,

α e α α

α
α v α v αR

( ) ( ) ( )

( )
( ) ( ) ( )

(A.80)

must hold for for each α. Dissipation is therefore characterized by the two inequalities above:

• the first, cf. (A.80)1, represents the dissipation due to network alterations due to changes in ξ α( ); while

• the second, cf. (A.80)2, represents the dissipation due to viscous flow.

A.5.2. Isotropic free energy
For isotropic materials the free energy functions ψ ξC( , )α e α α

R
( ) ( ) ( ) are isotropic functions of their arguments. An immediate

consequence is that these free energy functions have the representation

ψ ξ ψ ξC( , ) = ( , ),α e α α α α
CR

( ) ( ) ( )
R
( ) ( )e α( ) (A.81)

with

( )I I IC C C= ( ), ( ), ( )e α e α e α
C 1

( )
2

( )
3

( )e α( )

the list of principal invariants of Ce α( ).
Thus, from (A.78)1, it follows that

ψ ξ
T

C
= 2

∂ ( , )
∂

,e α
α α

e α
C( ) R

( ) ( )

( )

e α( )

(A.82)

and that Te α( ) is an isotropic function of Ce α( ). Hence, Te α( ) and Ce α( ) commute,

C T T C= .e α e α e α e α( ) ( ) ( ) ( ) (A.83)
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Then, since the Mandel stresses are defined by (cf. (A.56))

M C T= ,e α e α e α( ) ( ) ( )

we find that the Mandel stresses Me α( ) is symmetric.
Next, from (A.55) JT F T F=α e α e α e α e α( ) ( )−1 ( ) ( ) ( ) ⊤, and hence using (A.82)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J

ψ ξ
T F

C
F= 2

∂ ( , )
∂

.α e α e α
α α

e α
e αC( ) ( )−1 ( ) R

( ) ( )

( )
( ) ⊤e α( )

(A.84)

Since χT T= ∑α
α α( ) ( ) and J J=e α( ) , we obtain

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑J χ

ψ ξ
T F

C
F= 2

∂ ( , )
∂

.
α

α e α
α α

e α
e αC−1 ( ) ( ) R

( ) ( )

( )
( ) ⊤e α( )

(A.85)

Finally, on account of the symmetry of the Mandel stresses, the microforce balances (A.65) reduce to

M T= .e α v α
0

( ) ( ) (A.86)

A.5.3. Constitutive equations for Tv α( ). Hardening variables s→ and their evolution
To account for the major strain-hardening/softening characteristics of materials observed during viscous deformation, we

introduce a set of internal variables which represent important aspects of the microstructural resistance to viscous flow.

• A list of M scalar internal state-variables

s s s s→ = ( , ,…, ).M(1) (2) ( )

It is convenient to introduce the notation

Λ s ξC= ( , ,
→

).α e α α( ) ( ) (A.87)

Then, guided by inequality (A.80)2, we take the stresses Tv α( ) to be given by constitutive equations of the form

ΛT Y D= ( , ),v α v α v α α( ) ( ) ( ) ( ) (A.88)

and presume that the internal variables s α( ) evolve according to

Λs H Ḋ = ( , ).α α v α α( ) ( ) ( ) ( ) (A.89)

A.5.4. Flow rule
Upon using the constitutive relation for Tv α( ) above and the microforce balances (A.86), a central result of our theory is the flow

rule,

Λ αM Y D= ( , ) for each .e α v α v α α
0

( ) ( ) ( ) ( ) (A.90)

Codirectionality hypothesis
Let

γ Ḋ = 2 | |,v α v α( ) def ( ) (A.91)

denote a equivalent viscous shear strain rate for the αth micromechanism. Then,

N D
D

N D 0=
| |

with tr = 0, when ≠ ,v α
v α

v α
v α v α( )

( )

( )
( ) ( )

(A.92)

defines the viscous flow direction for the αth micromechanism, so that

γD N= 1
2

̇ .v α v α v α( ) ( ) ( )
(A.93)

Then, the mechanical dissipation inequality (A.80)2 requires that

⎛
⎝⎜

⎞
⎠⎟γY N1

2
: ̇ ≥ 0v α v α v α( ) ( ) ( )

(A.94)

Guided by this dissipation inequality, we henceforth adopt the codirectionality hypothesis, which asserts that
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• each dissipative flow stress Yv α( ) is parallel to and points in the same direction as Nv α( ):

Λ ΛY γY D N N( , ) = 2 ( ̇ , , ) ,v α v α α α v α v α α v α( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (A.95)

where

Λ ΛY γ N Y D N( ̇ , , ) = 1
2

( , ):α v α v α α v α v α α v α( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
(A.96)

represents a scalar shear flow strength for the αth micromechanism.

Strong isotropy hypothesis
We also assume that each scalar flow strength ΛY γ N( ̇ , , )α v α v α α( ) ( ) ( ) ( ) and the hardening functions ΛH γ N( ̇ , , )α v α v α α( ) ( ) ( ) ( )

characterizing the evolution of the scalar internal variable s α( ) are independent of the flow direction Nv α( ), so that

Λ ΛY γ H γ( ̇ , ), ( ̇ , ).α v α α α v α α( ) ( ) ( ) ( ) ( ) ( )

Thus, using YY N= 2v α α v α( ) ( ) ( ), the flow rule (A.90) reduces to

ΛY γM N= 2 ( ̇ , ) ,e α α v α α v α
0

( ) ( ) ( ) ( ) ( )

which immediately gives

N M
M

=
| |

,v α
e

e
( ) 0

0 (A.97)

and

Λτ Y γ= ( ̇ , ),α α v α α( ) ( ) ( ) ( ) (A.98)

where we have introduced an equivalent shear stress τ α( ), defined by

τ M= 1
2

| |.α e α( ) def
0

( )

(A.99)

• When τ α( ) and Λα( ) are known, (A.98) serves as an implicit equation for the equivalent viscous shear strain rate rate γ ̇v α( ) whenever
it is non-zero.

Note that from (A.94) and (A.96) and (A.98) that the viscous dissipation for each micromechanism is given by

Y γ γ̇ > 0 for ̇ > 0.α v α v α( ) ( ) ( ) (A.100)

We assume that

ΛY γ γpositive valued strictly increasing function of( ̇ , ) is a − ̇ ,α v α α v α( ) ( ) ( ) ( ) (A.101)

so

(i) that the dissipation inequality (A.100) is satisfied, and
(ii) that each fixed Λα( ), the function ΛY γ( ̇ , )α v α α( ) ( ) ( ) is invertible.

Hence,

Λγ f τ̇ = ( , ) ≥ 0.v α α α α( ) ( ) ( ) ( ) (A.102)

Thus, the evolution equation for each Fv α( ) is

F D F F X 1̇ = , ( , 0) = ,v α v α v α v α( ) ( ) ( ) ( ) (A.103)

with the viscous stretching given by

⎛
⎝⎜

⎞
⎠⎟γ

τ
D

M
= ̇

2
,v α v α

e α

α
( ) ( ) 0

( )

( )
(A.104)

and γ ̇v α( ) given by (A.102).
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