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a b s t r a c t

Soft materials including elastomers and gels are pervasive in biological systems and tech-
nological applications.Whereas it is known that intrinsic fracture energies of softmaterials
are relatively low, how the intrinsic fracture energy cooperates with mechanical dissipa-
tion in process zone to give high fracture toughness of softmaterials is notwell understood.
In addition, it is still challenging to predict fracture energies and crack-tip strain fields of
soft tough materials. Here, we report a scaling theory that accounts for synergistic effects
of intrinsic fracture energies and dissipation on the toughening of soft materials. We then
develop a coupled cohesive-zone and Mullins-effect model capable of quantitatively pre-
dicting fracture energies of soft tough materials and strain fields around crack tips in soft
materials under large deformation. The theory and model are quantitatively validated by
experiments on fracture of soft tough materials under large deformations. We further pro-
vide a general toughening diagram that can guide the design of new soft tough materials.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Except bones and teeth, most parts of animal bodies
consist of soft materials—elastomers and hydrogels with
relatively low rigidity and high deformability compared to
hard materials such as steel and ceramics. Biological soft
materials such as cartilage, muscle, skin and tendon usu-
ally need to maintain high toughness, which is critical for
survival and well-being of animals under various internal
and external loads [1]. Soft materials also promise broad
technological applications in areas as diverse as soft ma-
chines and robots [2–4], artificial tissues and organs [5],
non-conventional electronics [6,7], and microfluidics and
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optics [8,9]. In these applications, high toughness of the
materials is usually required for reliability and robust func-
tion of the systems.

Owing to their scientific and technological importance,
various soft toughmaterials have been developed in recent
decades [10–13]. The intrinsic fracture energy of soft ma-
terials – i.e., the energy required to fracture a layer of poly-
mer chains in front of the crack [14] – is relatively low; and
it is qualitatively known that the toughening of soft ma-
terials generally relies on mechanical dissipation in pro-
cess zones around cracks [14–20]. However, it is still not
well understood how the intrinsic fracture energy andme-
chanical dissipation cooperate synergistically to give rise
to high fracture toughness of soft materials [21]. Further-
more, physical models that can predict the fracture energy
and crack-tip strain fields of soft materials are of imminent
importance to the design of new soft tough materials, but
such predictive models still do not exist.

Here, we report a scaling law and a continuum model
that quantitatively accounts for the synergistic contribu-

http://dx.doi.org/10.1016/j.eml.2015.07.007
2352-4316/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eml.2015.07.007
http://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2015.07.007&domain=pdf
mailto:zhaox@mit.edu
http://dx.doi.org/10.1016/j.eml.2015.07.007


2 T. Zhang et al. / Extreme Mechanics Letters 4 (2015) 1–8

Fig. 1. Schematics of the theory and model for fracture in soft tough materials. (a) Crack propagation in a soft tough material under pure-shear test. A
process zone with height lD develops in the material during crack propagation. (b) The mechanical dissipation in the process zone is characterized by the
Mullins effect. A typical stress–stretch curve of the soft material under cyclic pure-shear tensile deformation. The hysteresis loop in the curve indicates
mechanical dissipation. (c) The intrinsic fracture energy of the soft material is characterized as a cohesive-zone model with triangle traction–separation
law. (d) The hysteresis ratio of the soft material monotonically increases with the maximum work done to the material.

tions of intrinsic fracture energies and dissipations to the
total fracture energies of soft materials. We character-
ize the essential physical features of intrinsic fracture en-
ergy and dissipation using the cohesive-zone model and
Mullins-effect model, respectively, implemented in finite-
element software, ABAQUS. Our calculation shows that the
total fracture energy of soft material scales linearly with
its intrinsic fracture energy, while the effect of dissipation
manifests as a scaling pre-factor that can be much higher
than one. To validate the theory and model, we measure
the stress–strain hysteresis and intrinsic fracture energies
of polyacrylamide-alginate (PAAm-alginate) hydrogels of
different compositions, which represent soft tough mate-
rials with different properties [12,22]. Using the material
parametersmeasured independently, ourmodel can quan-
titatively predict the fracture energies of different soft ma-
terials as well as strain fields and crack propagations in
them. Based on the model, we further calculate a tough-
ening diagram that can guide the design of new soft tough
materials.

2. Scaling analysis

Let us consider a notched soft material undergoing the
pure-shear test to measure its fracture energy, as illus-
trated in Fig. 1(a) [23]. Crack propagation in the soft ma-
terial requires the scission of at least a layer of polymer
chains. The required mechanical energy for chain scission
divided by the area of crack surface at undeformed state
gives the intrinsic fracture energy, Γ0. In addition, mate-
rial elements in a process zone around the crack will also
be deformed and undeformed as the crack propagates. If
mechanical energy is dissipated during this process, the
dissipated energy divided by the area of crack surface at
undeformed state further contributes to the total fracture
energy by, ΓD (Fig. 1(b)). Therefore, the total fracture en-
ergy of a soft material can be expressed as
Γ = Γ0 + ΓD (1)
where ΓD = ŪDlD and ŪD is the mechanical energy dis-
sipated per the volume of the process zone, and lD the
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height of the process zone in the soft material at unde-
formed state. Since material elements in the process zone
approximately undergo the pure-shear tensile deforma-
tion (i.e., tensile deformation of a thin sheet with one lat-
eral dimension fixed as illustrated in Fig. S1(b)), we further
have ŪD ∝ UD (S = Smax), where UD is the mechanical en-
ergy dissipated per unit volume of the soft material under
pure-shear tensile deformation, and Smax is the maximum
nominal stress that can be achieved in the material under
pure-shear tensile deformation (Fig. 1(b)).

For a soft material represented by the neo-Hookean
model in pure-shear test (Fig. 1(a)), the leading order of
the nominal stress at a point near the crack tip scales as
S ∝

√
2Γ µ/π l [21,24,25], where µ is the shear modulus

of the materials, Γ the fracture toughness and l the dis-
tance from the point to the crack tip. Since only a region
of the material around crack tip is under sufficiently high
deformation (i.e., material inside the process zone) to sig-
nificantly contribute to energy dissipation, we can choose
a critical stress scale to determine the boundary of the pro-
cess zone. It can be argued that the critical stress scale is on
the same order as the maximum stress (Smax) in the sam-
ple, and therefore the size of the process zone according to
the crack tip stress field scales as

lD ∝ Γ µ/S2max ∝ Γ /Umax (2)

where Umax ∝ S2max/µ is the maximum mechanical work
done on the material under pure-shear tensile deforma-
tion. A combination of Eqs. (1) and (2) leads to a governing
equation for the total fracture energy of soft tough materi-
als [26–28],

Γ =
Γ0

1 − α · hmax
(3)

where hmax = UD (S = Smax) /Umax is the ratio between
themaximum dissipation andmaximummechanical work
done on the material, and 0 ≤ α ≤ 1 is a dimensionless
number depending on the stress–strain hysteresis of the
material deformed to different levels of stresses.

3. Coupled cohesive-zone and Mullins-effect model

Next we develop a continuum model that can pre-
dict the fracture energy of soft tough materials, using
material parameters measured independently. The contin-
uummodel needs to quantitatively capture the synergistic
contributions of intrinsic fracture energy and mechani-
cal dissipation in process zone to the total fracture en-
ergy. In order to model the intrinsic fracture energy of soft
materials, we adopt a triangle cohesive-zone model gov-
erned by the maximum nominal stress (Smax) and maxi-
mumnominal separation (δmax) on the expected crack path
(Fig. 1(c)) [24]. The damage initiation of the cohesive layer
follows the quadratic nominal stress criterion

tn
Smax

2

+


ts

Smax

2

= 1 (4)

where t(•) represents the nominal surface tractions on the
crack surface, and the subscripts n and s indicate normal

and tangential directions, respectively. When Eq. (4) is sat-
isfied, the cohesive layer enters into the softening regime,
which is described by the linear damage evolution function
illustrated in Fig. 1(c). The cohesive-zonemodel prescribes
the intrinsic fracture energy of the soft materials to be,

Γ0 = 1/2Smaxδmax. (5)

To physically implement the cohesive-zone model, the
maximum nominal stress Smax of the cohesive zone is
taken as the measured failure stress of the material under
pure-shear tension, and the maximum nominal separation
δmax is calculated based on the experimentally measured
intrinsic fracture energy of the material Γ0 and Eq. (5), i.e.,
δmax = 2Γ0/Smax.

Mechanical dissipation in the process zone may arise
from viscoelasticity [29,30], plasticity [31], and/or partial
damage of the soft materials; and such dissipations mani-
fest as hysteresis loops on stress–strain curves of themate-
rial (Fig. 1(b)). To capture the essential effect of dissipation
in process zone on toughening, we model the dissipation
as the Mullins effect in soft materials [32]. The Mullins ef-
fect gives hysteresis loops in the stress–stretch curves of
the materials under loading–unloading cycles. We define
the hysteresis ratio of the material under pure-shear ten-
sile deformation as

h = UD/U (6)

where U and UD are the mechanical work done on and
the energy dissipation in a unit volume of the soft ma-
terial under pure-shear tensile deformation, respectively.
The hysteresis ratio of soft material generally increases
with the deformation of (or the work done on) the ma-
terial due to the accumulation of material damage and
eventually reaches a maximum value, i.e., h (S = Smax) =

hmax (Fig. 1(d)), which is used in Eq. (3). To describe the
Mullins effect in soft materials, we adopt the modified Og-
den–Roxburgh model used in ABAQUS [33]. In brief, the
free energy function of an incompressible material with
Mullins effect can expressed as

W (F, η) = ηW̃ (F) + φ (η) (7)

where F is the deformation gradient tensor, η is a damage
variable (0 < η ≤ 1), W̃ is the free energy function of a
pure elastic material without Mullins effect, and φ (η) is
referred to as the damage function. The damage variable η
characterizes the stress softening due to material damage.
Thematerial is in its virgin state if η = 1 and fully damaged
state if η = 0. The damage function and damage variable
in Eq. (7) can be expressed as

φ (η)

=

 η

1


m + βWm

erf−1 (r (1 − η)) − Wm
dη (8a)

η = 1 −
1
r
erf


Wm

− W̃


/

m + βWm

(8b)

whereWm denotes the maximum strain energy density of
the material before unloading, erf is the error function, β
is a positive number to avoid overly stiff response at the
initiation of unloading from relatively large stretch levels,
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and r and m are constants that characterize the damage
properties of thematerial. Throughout the calculations, we
set β = 0.1 for numerical stabilization. The parameter r
in Eq. (8) indicates the maximum extent of the material
damage related to the virgin state [32], which therefore
determines the maximum hysteresis ratio of the material
under pure-shear tensile deformation, hmax. Fig. 2(a) gives
the relation between hmax and r for a neo-Hookean ma-
terial with Mullins effect under pure-shear tensile defor-
mation. It is evident that hmax is a monotonic decreasing
function of r . The parameter m in Eq. (8) represents a
critical energy scale that acts as a threshold for activat-
ing significant dissipation in the material. Fig. 2(b) shows
the calculated hysteresis ratio h as a function of U/Umax
for different values of m/Umax for a neo-Hookean material
with Mullins effect under pure-shear tensile deformation.
If U/Umax < m/Umax for a material under pure-shear ten-
sile deformation, the hysteresis ratio h is generally much
smaller than hmax, whichmeans that the deformation of (or
the work done on) the material is not sufficient to induce
significant dissipation. If U/Umax ≫ m/Umax, the hystere-
sis ratio h can reach a value close to hmax, whichmeans that
significant dissipation has been activated. (See Fig. 1(d) for
schematics and Fig. 2(c) for calculation.) Therefore, the pa-
rameterm/Umax indicates the speed of h increasing from 0
to hmax as a function of U/Umax; a smaller value of m/Umax
gives a faster transition to hmax.

To physically implement the Mullins-effect model, the
free energy function W̃ (F) in Eq. (6) can be obtained by fit-
ting a hyperelasticmodel to the stress–stretch curve of soft
material undermonotonic loading. The parameters r andm
in Eq. (8) can be obtained frommultiple stress–stretch hys-
teresis of the soft material deformed to different stretches.

In order to calculate the total fracture energy and crack-
tip strain field of soft material, the pure-shear test is sim-
ulated in the coupled cohesive-zone and Mullins-effect
model [23] (Fig. S1 and Supplementary materials for de-
tails). In brief, two identical pieces of a soft material are
clamped along their long edges with rigid plates. A notch
is introduced into the first sample, which is then gradually
pulled to a stretch of λc times of its undeformed length un-
til a crack steadily propagates from the notch (Fig. S1(a)).
Thereafter, the second sample without notch is uniformly
stretched to the same critical stretch λc with the applied
stress S recorded (Fig. S1(b)). The total fracture energy of
the soft material can be calculated as Γ = L0

 λc
1 Sdλ,

where L0 is the height of the sample shown in Fig. S1(a).
We next discuss the difference in critical stretches for

crack initiation and steady-state propagation and there-
fore the difference in corresponding fracture energies. The
crack initiation happens at the same critical stretch for a
material with and without energy dissipation (i.e., with
andwithoutMullins effect), because the unloading process
and thus dissipative properties of thematerial do not affect
crack initiation. Themeasured fracture energy correspond-
ing to crack initiation reflects the intrinsic fracture energy
of a material. On the other hand, the critical stretches for
steady-state propagation of cracks in a material with and
without energy dissipation can be very different. For pure
elastic samples (i.e., without Mullins effect), the steady-
state propagation of crack follows right after the crack

Fig. 2. The modified Ogden–Roxburgh model for Mullins effect. (a) The
relation between hmax and r for a neo-Hookean material with Mullins
effect under pure-shear tensile deformation. (b) The calculated h as a
function of U/Umax for different values of m/Umax for a neo-Hookean
material with Mullins effect under pure-shear tensile deformation.
(c) The calculated stress–stretch hysteresis for a neo-Hookean material
with Mullins effect under pure-shear tensile deformation.

initiation. For samples with dissipation (i.e., with Mullins
effect), the steady-state propagation of crack, however, can
occur at a much larger stretch than crack initiation (see
Fig. S2 and supplementary movie), because the unloaded
material around the crack has been softened—reflecting
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Fig. 3. Calculated fracture energies of soft materials from the coupled
cohesive-zone andMullins-effect model. (a) Calculated Γ as a function of
Γ0 for soft materials with different Smax/µ and hmax . The value ofm/Umax
is set to be 0.01. (b) Calculated Γ as a function of hmax for soft materials
with various values of Smax/µ andm/Umax . (c) Calculated parameter α in
Eq. (3) as a function ofm/Umax .

the toughening effect of mechanical dissipation. In the
current study, we use the fracture energy measured at
steady-state propagation of crack (i.e., the steady-state
critical energy release rateGss) to give the total fracture en-
ergy Γ of materials with and without dissipation.

4. Theoretical and numerical results

Next, we will use the coupled cohesive-zone and
Mullins-effect model to validate the scaling for total frac-
ture energies of soft materials. The soft material under
loading is taken as a neo-Hookean material with initial
shear modulusµ. Based on the coupled cohesive-zone and
Mullins effect model, the total fracture energy of the soft
material, Γ , is mainly determined by a set of four param-
eters including µ, Γ0, hmax, Smax, and m/Umax. (Note that
Umax is approximately equal to S2max/2µ for neo-Hookean
materials.) We will vary these parameters independently
in the model, and calculate the fracture energy of the ma-
terials following the pure-shear method described above.
Without loss of generality,we use the initial shearmodulus
µ to normalize Smax, Γ0 and Γ . In Fig. 3(a), the calcu-
lated values of Γ are plotted as functions of Γ0 of ma-
terials with different combinations of Smax/µ and hmax. It
can be seen that Γ is linearly scaled with Γ0 in all the
calculated cases. With this knowledge in mind, we next
explore the enhanced ratio of the fracture energy (Γ /Γ0)
due to mechanical dissipation in the process zone. We
calculate Γ /Γ0 as functions of hmax for various combina-
tions of Smax/µ and m/Umax. Fig. 3(b) shows that the rela-
tion Γ /Γ0 = 1/ (1 − α · hmax) is valid for wide ranges of
Smax/µ (i.e., from 2 to 6) and m/Umax (i.e., 0.005–0.1). In
addition, it can be seen that the calculated values of Γ /Γ0
from models with different Smax/µ but the same m/Umax
are approximately the same. This means the parameter α
in Eq. (4) mainly depends on the normalized critical en-
ergy scale, m/Umax. In Fig. 3(c), we summarize the calcu-
lated parameter α as a function of m/Umax for different
values of Smax/µ. It is evident that α does not depend on
Smax/µ, which is consistent with the result in Fig. 3(b). In
addition, α is a monotonic decreasing function of m/Umax.
This trend can be qualitatively understood as follow.When
the normalized work done on a material element in the
process zone exceeds a critical value m/Umax, the element
begins to dissipate mechanical energy significantly. There-
fore, for materials with otherwise the same properties, a
lower value of m/Umax gives more dissipation in the pro-
cess zone and thus a higher enhancement of the fracture
energy, i.e., higher value of Γ /Γ0. Based on the models’ re-
sults (Fig. 3(c)), we further fit α as a function ofm/Umax for
neo-Hookean materials as

α ≈ 0.33 +
0.034

m/Umax + 0.045
. (9)

Based on Eqs. (3) and (9), we summarize the toughness
enhancement of soft materials, Γ /Γ0, as a function of the
maximum hysteresis ratio hmax and the normalized criti-
cal energy scale for significant dissipationm/Umax in Fig. 4.
The results reveal three critical factors in toughening of soft
materials: (1) high intrinsic fracture energy (i.e., high Γ0),
(2) high value ofmaximumhysteresis ratio (i.e., high hmax),
and (3) quick transition to the maximum hysteresis (i.e.,
low m/Umax). These findings are consistent with the un-
derlying physical mechanisms for the design of soft tough
materials, such as large amounts of long stretchy polymer
chains for high intrinsic fracture energy, sacrificial bonds
for high energy dissipation, and high stretchability for a
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Fig. 4. A quantitative diagram for toughening mechanisms of soft materials. The toughness enhancement ratio Γ /Γ0 as a function of hmax and m/Umax ,
calculated based on Eqs. (3) and (9).

quick transition from zero to maximum hysteresis ratio.
Our theoreticalmodels can quantify the contributions from
each factor, and therefore provide quantitative guidelines
for the design of future soft tough materials.

5. Experimental validation

To validate the proposed theory and model, we take
the interpenetrating-network hydrogel of polyacrylamide-
alginate as a model soft tough material. (Details of the ma-
terial synthesis are given in the supplementary materials.)
We measure stress–stretch curves and various hysteresis
ratios of the hydrogel under pure-shear tensile deforma-
tion up to the maximum stress Smax, and then implement
the measured data into the modified Ogden–Roxburgh
model inABAQUS. As shown in Fig. 5(a), the pure elastic de-
formation of the hydrogel (sample 1) can bewell described
by the Ogden hyperelasticmodel [34]. In Fig. 5(b), we com-
pare the measured hysteresis ratio of the hydrogel un-
der different deformation (i.e., different U/Umax) with the
model’s prediction, validating that the Ogden–Roxburgh
model can accurately characterize the dissipative property
of the hydrogel. In order to measure the intrinsic fracture
energy of the hydrogel, we pre-deform the hydrogel sam-
ples to a level of stress approximately Smax for multiple
cycles to deplete the dissipative capacity of the samples
[12,22]. Thereafter, the pure-shear test is used to measure
the stress–stretch hysteresis and fracture energy of the
pre-deformed sample. There is almost no stress–stretch
hysteresis of the sample pre-deformed to Smax [22], indi-
cating negligible mechanical dissipation of the sample. In

addition, the measured fracture energy as a function of
pre-deformation indeed reaches an asymptote (Fig. 5(c)),
which gives the intrinsic fracture energy of the hydrogel
without the effect of dissipation in the process zone. The
measured intrinsic energy is then implemented through
the cohesive-zone model in ABAQUS.

Now that the material parameters of the hydrogel have
been independently measured and implemented in the
continuummodel, wewill perform the pure-shear tests on
samples both in experiments and in the model to obtain
the fracture energies of the hydrogel. The samples are cho-
sen large enough to avoid the finite specimen size effect on
the measured fracture energies [12]. (Details of the sam-
ple geometry are given in the supplementary materials.) It
should be noted that, in other studies, the process zone can
be as large as the tested sample,making the fracture tough-
ness as an extrinsic quantity depending on the specimen
size [20]. In Fig. 5(d), we compare the force–displacement
curves of the notched sample from experiment and cal-
culation, and find that the theoretically predicted curve
and critical point for steady-state crack propagation are
in good agreement with experimental results. We further
use digital image correlation (DIC) method (see details in
Fig. S4) to measure the strain field around the notch in
the sample under pure-shear test. As shown in Fig. 5(e)–(f)
and the supplementary movie, the strain fields around the
notch predicted by themodel are consistent with themea-
sured results by DIC. One of the advantages of our nu-
merical simulations is to visualize the distribution of the
exact amount of the energy dissipation in the materials,
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measured hysteresis ratios of the material deformed to different stretches, and the calculated hysteresis ratio by the modified Ogden–Roxburgh model
with r = 1.516 and m = 4.274 J/m3 . (c) Measured fracture energy of the sample pre-deformed to different pre-stretches λp . (d) Force–displacement
curves of the notched sample under pure-shear test measured from the experiment and predicted by the model. The strain field in the notched sample
under pure-shear test to different stretches: (e) measured by DIC in the experiment and (f) predicted by the model. (g) Energy dissipated in the notched
sample under pure-shear test to different stretches. The color represents the true strain (εyy) in (e) and (f) and the density of the energy dissipation in (g).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

while it is extremely challenging to obtain such quantita-
tive data experimentally [13,35]. From Fig. 5(g), it can be
seen that a region of significant dissipation indeed encap-
sulates the crack tip, and the area of the region gradually
increaseswith the external load until crack propagation. To
further validate the predictive capability of the model, we
fabricate another polyacrylamide-alginate hydrogel with a
different composition and therefore different mechanical
properties, referred to as sample 2. We then perform the
same pure-shear experiment and simulation on sample 2,

and show that the experiment and simulation results agree
well with each other (see details in Fig. S5).

6. Conclusion

In this paper, we propose a scaling law that accounts
for synergistic effects of intrinsic fracture energies andme-
chanical dissipations on the toughening of soft materials.
We then develop a coupled cohesive-zone and Mullins ef-
fect model to quantitatively predict the fracture energies
and crack-tip strain fields in soft tough materials, using
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material parameters measured independently. The theory
and the model show that the toughening of a soft mate-
rial relies on high intrinsic fracture energy of the material,
high value of maximum hysteresis ratio of the material,
and quick transition to themaximumhysteresis in thema-
terial under deformation. We further perform pure-shear
experiments coupled with DIC on tough hydrogels to mea-
sure their fracture energies and strain fields around crack
tips, and show that the experimental results match well
with the model’s predictions. The theory and model can
provide quantitative guidance for the design of future soft
tough materials.
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Pure-shear test for the measurement of fracture energy 

To measure the fracture energy of the samples, we separately stretch two identical samples 

with the same thickness 0T , width 0W  and initial gage length 0L , where 000 TLW   (see Fig. 

S1). One sample is notched with a crack length ranging from 025.0 W  to 05.0 W  and the other is 

un-notched. The notched sample is stretched to a critical distance cL until crack starts to 

propagate while the un-notched sample is stretched to measure the force-displacement curve. 

The fracture energy of the gel can be calculated by  00
0

TWFdl
cL

L  [1]. 
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Figure S1. Schematic of pure-shear test for measuring fracture energy of hydrogels. (a) 

Notched samples are stretched to critical distance of cL until the crack propagates. (b) Un-

notched samples are stretched to cL  with the force  recorded and the fracture energy of the 

hydrogel can be calculated as )/()( 00
0

TWFdl
cL

L , where 0W , 0T  and 0L represents width, 

thickness and initial gage length of the sample, respectively. 

 

 

 

 

Finite-element models 

We implemented the coupled cohesive-zone and Mullins-effect model into a two-

dimensional (2D) finite-element model to simulate the pure-shear test of soft materials. As 

shown in Fig. S2, the numerical model consists of a finite strip with a height of L0, width of W0 
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and an initial crack length of a. The geometry of the simulated strip is taken as L0=60 mm, 

W0=480 mm, and a =120 mm unless otherwise specified. The pure elastic properties the 

hydrogel were modeled as the one term Ogden hyperelastic material [2] 

 32
~

111
321

2
1   W                                       (S1) 

where μ is the shear modulus, 1  a fitting parameter and λi the ith principle stretch (i=1,2,3). A 

Neo-Hookean material model (i.e., 21  ) is first adopted as the model material to gain 

theoretical understanding of the toughness enhancement due to energy dissipation. Also, it has 

been shown that Eq. (S1) can accurately capture the elastic deformation of the hydrogels used in 

current study (Fig. 5a and Fig. S5). 

All the finite-element calculations are performed with ABAQUS/Explicit. Since the explicit 

simulations cannot handle fully incompressible materials, we set the Poisson’s ratio of the soft 

materials to be larger than 0.499. The soft material is modeled using plane-stress 4-node linear 

elements with reduced integration (CPS4R). The cohesive interaction for describing crack 

propagation is described with the cohesive element implemented in ABAQUS (COH2D). The 

crack surface is uniformly discretized with very fine mesh (0.1 mm). The hydrogel strip is loaded 

by fixing the displacement along horizontal direction of the top and bottom surfaces and moving 

them along vertical direction with a constant velocity. A very low loading rate is adopted to 

ensure a quasistatic process, which can be verified by the stress-stretch curves from simulations 

under different loading rates (Fig. S2a). The maximum stress point on the stress-stretch curve is 

used to calculate the fracture energy according to the pure-shear method described above. As 

shown in Fig. S2b-c, the failures of the materials with and without the Mullins effect occur at 

critical stretch ratios around 1.24 and 1.07, respectively, corresponding to an order magnitude 

enhancement in fracture energy. 
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Figure S2. Numerical simulations for the toughening effect of energy dissipation. (a) Stress-

stretch curves for materials with and without Mullins effect. The inset figure is the schematic 

show of the simulated model. (b) Snapshots for the crack initiation and propagation in the 

materials with Mullins effect (hmax=0.858). The crack initiates at the stretch level of 1.07, but 

does not propagate until the stretch level of 1.24 due to the effect of mechanical energy 

dissipation. (c) Snapshots for the crack initiation and propagation in the materials without 

Mullins effect. The crack initiates and propagates at the stretch level of 1.07.  

 

 

 

We next validate the choices of the stiffness of the cohesive zone k and mesh size used in the 

simulations. The simulated sample contains 70,000 elements when using minimum mesh size as 

0.1 mm. It is very difficult to further reduce the mesh size with the current available 

computational resources for us. We thus choose a smaller sample (L0=20 mm, W0=160 mm, and 

a =40 mm) for the validation. As demonstrated in Fig. S3a, the stress-stretch curves converge to 
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a single curve for large enough stiffness of the cohesive zone (i.e., k/Smax > 15). Therefore, we set 

the stiffness of cohesive zone k is always at least 15 times larger than Smax in the simulations to 

eliminate the influence of the cohesive layer on the mechanical response of the materials. As 

shown in Fig. S3b, simulations with two different mesh sizes (0.1 and 0.05 mm) are in good 

agreement with each other, indicating that our results are insensitive to the mesh size (0.1 mm) 

adopted in current simulations. 

 

Figure S3. Validation of the finite element models. (a) Effect of the stiffness value of the 

cohesive zone k on the simulations. (b) Effect of mesh size on the simulations. 

 

 

 

Material preparation and mechanical test 

To validate the proposed theory and model, we take the interpenetrating-network hydrogel of 

PAAm-Alginate as a model material to investigate the toughness enhancement due to energy 

dissipation in a realistic soft material. A pre-gel solution is prepared by mixing 4.1 mL 4.8 wt% 

alginate (Sigma, A2033) and 5.5 mL 18.7 wt% acrylamide (Sigma, A8887). We add 900 µL 
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0.2g/100ml N,N-methylenebisacrylamide (Sigma, 146072) as the crosslinker for polyacrylamide 

and 102 µL 0.2 M ammonium persulphate (Sigma, 248614) as a photo initiator for 

polyacrylamide. After degassing the pre-gel solution in a vacuum chamber, we add respectively 

200 µL and 300 µL (sample 1: 200 µL; sample 2: 300 µL) 1 M calcium sulphate (Sigma, C3771) 

as the crosslinker for alginate and 8.2 µL N,N,N’,N’-tetramethylethylenediamine (Sigma, 

T7024-50M) as the crosslinking accelerator for polyacrylamide to form hydrogels with different 

energy dissipation. Thereafter, the pre-gel solution is infused into a glass mold and is subjected 

to ultraviolet light for 60 minutes with 8 W power and 254 nm wavelength to cure the hydrogel. 

Pure-shear tension test is applied on the samples with Zwick/Roell Z2.5 materials testing 

machine at room temperature. The hydrogel strip for experimentally measuring the fracture 

energy has a dimension of L0=20 mm, W0=180 mm and a =90 mm, which also applies to the 

numerical simulations presented in Fig. 5 and Fig. S5. As demonstrated by previous study [3], 

the current size is large enough to obtain fracture energies that are independent of the specimen 

size.   

 

Digital image correlation 

As illustrated by Fig. S4, digital image correlation is a non-contact optical technique that allows 

full-field strain measurement on a surface under deformation [4]. A random speckle pattern is 

generated on the surface of a sample by spray painting. Images of speckle patterns at both 

reference state and deformed state were recorded by a standard video camera during the process 

of the deformation. Both images are transformed to grey matrices. To track the surface 

displacements of deforming materials, a mathematically well-defined correlated function   is 

applied to match digitalized images before deformation and after deformation [5] 
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where ),( yxA is the grey level at the location of ),( yx at reference state, ),( ** yxB represents the 

grey level at the location of ),( ** yx at deformed state. The relation between ),( ** yx  and ),( yx  

can be related as: 
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where u  and v  respectively represents the displacements in the direction of x and y .The 

displacements can be determined by minimizing the correlated function ),( yxr . 

 

 

Figure S4. Schematic of digital image correlation technique. A random speckle pattern is 

spray painted onto the surface of a sample. Images of the speckle patterns at both the reference 

state and deformed state are recorded by a standard video camera throughout sample extension. 
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The surface strain is measured by matching the digitalized images before and after deformation 

via VIC-2D software. 

 

Experimental validation with hydrogel sample 2 

 

Figure S5. Comparison between experiments and simulations on fracture of PAAm-

alginate hydrogel Sample 2.  (a) Stress-stretch curves of the sample under pure-shear tensile 

deformation and one term Ogden model, i.e.,  32
~

111
321

2
1   W , with μ = 26.49 kPa 

and α1 = 1.674. (b) The measured hysteresis ratios of the material deformed to different stretches, 

and the calculated hysteresis ratio by the modified Ogden-Roxburgh model with r=1.203 and 

m=4.119 J/m3.  (c) Force-displacement curves of the notched sample under pure-shear test 
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measured from the experiment and predicted by the model. The strain field in the notched sample 

under pure-shear test to different stretches: (d) measured by DIC in the experiment and (e) 

predicted by the model.  (f) Energy dissipated in the notched sample under pure-shear test to 

different stretches. The color represents the true strain ( yy ) in (d) and (e) and the density of the 

energy dissipation in (f). 

 

 

Supplementary movie. Comparison between experiments and simulations on fracture of 

PAAm-alginate hydrogel Sample 1.  The counter represents the true strain ( yy ). 

 

 

Additional Reference 

[1]  R. Rivlin and A. G. Thomas, Journal of polymer Science 10, 291 (1953). 
[2]  R. W. Ogden, Non‐linear elastic deformations (Courier Dover Publications, 1997). 
[3]  J.‐Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, 
Nature 489, 133 (2012). 
[4]  W. Peters and W. Ranson, Optical Engineering 21, 213427 (1982). 
[5]  H. Bruck, S. McNeill, M. A. Sutton, and W. Peters Iii, Experimental Mechanics 29, 261 (1989). 

 


	Predicting fracture energies and crack-tip fields of soft tough materials
	Introduction
	Scaling analysis
	Coupled cohesive-zone and Mullins-effect model
	Theoretical and numerical results
	Experimental validation
	Conclusion
	Acknowledgments
	Supplementary data
	References


