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Supplementary Figure 1 | Covalently incorporating spiropyran into the Sylgard network. (a)
A covalently crosslinked EMCR Sylgard network generated by combining Vinyl terminated
PDMS, hydrosilylated PDMS and the bis-alkene functionalized spiropyran (as crosslinker)
through a platinum-catalyzed hydrosilylation reaction. (b) Transition from the nearly colorless
spiropyran to the colored merocyanine by a force-activated 6-m electrocyclic ring-opening
reaction. Removing the deformation applied to the EMCR allows for thermal ring closure to the
spiropyran form within ~ 10 min, or within 3 min upon illumination with a visible light (e.g.,

green light).
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Supplementary Figure 2 | (a) Absorption and (b) emission spectra of the stress-activated

merocyanine within the EMCR elastomer.
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Supplementary Figure 3 | Schematic illustrations of uniaxial and equibiaxial deformation of

the EMCR elastomers. The stretches (L/L, ) in three directions of the uniaxially deformed
elastomer are 1+¢& , 1 and l/ (l+8) ; therefore, the first invariant is calculated as
1 :(1+<C;)2 +l+(l+g)_2 . The stretches in three directions of the equibiaxially deformed

elastomer are €+1, £+1 and (3+1)f2 ; therefore, the first invariant is calculated as

I=20+e) +(1+&)™".
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Supplementary Figure 4 | The nominal stress vs. strain curve of the EMCR Sylgard
elastomer. The EMCR elastomer shows negligible hysteresis for more than 11 cycles after the

first strain loading cycle. The nominal stress-strain curves are fitted to the Arruda-Boyce model,

s:yf(ﬂ—ﬂ‘z{l+i+ 17

Sn 175n

3 +...j, where s is the uniaxial nominal stress, A =1+ gis the

stretch, / = A> + 217 is the first invariant, and 7 is a parameter that accounts for the stiffening

effect. The fitted shear modulus of the EMCR elastomer is z£, =139.3kPa, and the fitted n is

1.89.
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Supplementary Figure 5 | Linear stability analysis of the electro-wrinkling instability. (a)

Schematic illustrations of the flat and wrinkled states. (b) The critical electric field and (c) the

wavelength of the wrinkling instability as functions of film-substrate thickness ratio / , / H and

modulus ratio gz, /p, .
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Supplementary Figure 6 | Finite-element calculations of the electro-cratering instability. (a)
A 2D plane-strain model for the finite-element calculations of the electro-cratering instability. (b)
The Gibbs free energy differences between cratered and flat states as functions of the applied
electric field. When the Gibbs free energy difference is equal to zero, the corresponding electric
fields marked by the red crosses ‘x’ are the electric fields in the EMCR film at the corresponding
cratered states. (c) Simulated geometry and (d) the first invariant of the cratered states of the

EMCR film under various electric fields. (¢) The maximum first invariant in the EMCR film as a



function of the electric field. The red dash line denotes the critical electric field of the wrinkling

instability calculated from Supplementary Figure 5.
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Supplementary Figure 7 | Finite-element calculations of hexagonally-distributed craters. (a)
A 3D prism model for the finite-element calculations for hexagonally-distributed craters. (b)
Simulated geometry and (c) the first invariant of the cratered states of the EMCR film under

various electric fields.
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Supplementary Figure 8 | Topographical evolution of electrically-induced aligned craters

and trenches. (a) A EMCR film under pre-stretch ﬂ.p =1.16 bonded on a buffer substrate.

Simulated geometries for electrically-induced (b) aligned wrinkles and (c) aligned craters. (d) A

EMCR film under pre-stretch 4, =1.82 bonded on a buffer substrate. Simulated geometries for

electrically-induced (e) aligned wrinkles and (f) trenches.
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Supplementary Figure 9 | Fabrication process of the elastomer laminate for electrically-
induced letter pattern. (a) A concaved letter “U” is ablated on a Kapton film (250 um) by a laser
ablation tool (Resonetics, USA). The depth of the letter is ~100 um. A Sylgard solution (base to
curing agent ratio of 5:1 by weight) is cast on the concaved letter “U” and is cured in an oven at
65°C for 12 hours. The modulus of this Sylgard elastomer is around 2 MPa (15 times of the
modulus of the EMCR film, and 150 times of the modulus of the buffer substrate). (b) The cured
Sylgard is peeled off, and (c) a soft buffer substrate (base to curing agent 125:2 by weight) is then

cast to embed the “U” object in the buffer substrate. (d) An equibaixially pre-stretched EMCR

film (4, = 0.5) is subsequently bonded on the buffer substrate.
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Supplementary Figure 10 | Finite-element calculations for electrically-induced pattern of

letter “U”. (a) A EMCR film is first equibaixially pre-stretched by A, =0.5, and (b) then

bonded on a buffer substrate embedded with a rigid object. (c) Simulated geometry and first

invariant in the EMCR film that displays a letter “U”.
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Supplementary Figure 11 | The maximum first invariant 7, in the EMCR film by
extremely deforming the film-substrate bilayer to deepest craters as a function of substrate-
film thickness ratio. According to Fig. 1g, the EMCR elastomer emits significant fluorescence

(fluorescence intensity ratio S/Sy>1) only when the first invariant / is larger than 6 (denoted as the

red dash line); therefore, only H / H , >1can induce significant fluorescence emission of the

EMCR elastomer.
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Supplementary Methods

Linear stability analysis of the electro-wrinkling instability
An elastomer bilayer composed of an EMCR film and a buffer substrate is illustrated in

Supplementary Fig. Sa. For simplicity, the protective insulator is not included in the current
analysis. A voltage @ is applied upon the elastomer bilayer. We denote the modulus, thickness,

permittivity and applied electric field of the EMCR filmas g, , H,, k, and E ,, respectively;
and the corresponding quantities of the buffer substrate as x,, H , k, and E_, respectively. At
the wrinkled state, the upper surface of the buffer substrate has a deflection 0, ( J, << H ), and

the upper surface of the EMCR film has a deflection 0, (5, << H +)- The electric field in the

elastomer bilayer follows

x,E, =KE, )]

E,(h +8)+E, (h, +5,)=D )

Therefore, the electric fields can be calculated as

E, = ®

E, = “4)

Since 8, /H, <<land 6,/H , <<1, Kk E; /2 and x E’ /2 can be approximated as'
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Mechanical equilibrium condition in the EMCR film can be expressed as

2
HVu, =VE =0

Where u , = [u A Uy ]T is the displacement vector in the EMCR elastomer, and P, is the

hydrostatic pressure that enforces the incompressibility of the elastomers. The stress in the

EMCR elastomer follows
Gf = Gmf =+ Gef
o _{ 2ppuy  — Py, (“fx,y TUL L )}
mf
Mg, Fug ) 2uuy,  — P
1 )

B 1 2 _ngEf 0
o,=¢E, ®F, —ng‘Ef‘ 1= L
0 Eé'fEf

)

(6)

(7

®)

©)

(10)
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where 6,, and ¢, are mechanical stress tensor and electric-field-induced stress tensor in the

EMCR film; u . represent the y -direction gradient of the x -direction displacement component

of u,; and Ef = [O Ef ]T is the electric field vector in the elastomer.

To solve the problem, we first consider the incompressibility of the elastomer, which can

be expressed as

Based on Supplementary Eq. (11), a stream function ® , can be used to express the

displacement as

15.C)
Oy
00,
u . e —
” ox

We perturb the solution of ® ,and P, as

{@) (. )= 0, (v)cos(kx)
P, (x, )= p,(y)sin(kx)

From Supplementary Eq. (7), we obtain

d d’
y{— e (if]—kpf 0
dy dy ‘
d’p, )\ dp,
‘ _k3 +k S =0

The general solutions for Supplementary Eq. (14) are

(I

(12)

(13)

(14)
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A similar analysis of the buffer substrate can give the corresponding @ _and p, for the substrate

as

_ky(—1+e2ky) e‘ky(—1+62ky)y
2w 4

0, (y)= %e‘ky (2 +2e* + ky— e”yky)cs1 + ¢

17
e (1 —e®? +ky+ e“yky)c {1

+
ak* 1, s

p.(y)= %eky (1 —e™ yfz,uscsl + % e (— 1+e** ),Lzscs3 + %eky (1 +e™ )?;4 (18)

There are eight unknown variables ¢ ; and c¢; in Supplementary Egs. (15-18), where i=1-4.

The unknown variables can be solved with the following boundary conditions.

An y=0, the bottom surface of the substrate , the displacement of the buffer substrate is

fixed and can be expressed as
u =0, ony=0 (19)

At y=h,, the top surface of the substrate, the force and displacement in elastomer bilayer

should be continuous, thus

16



n 6,n,=n_6,-n,

n 6 -n =n 6,0, ony=h (20)

u, =u,

r . . o .
where n,_ = [1 0] denotes the unit vector in x direction, and n, = [O I]T denotes the unit

vector in y direction.

At y=h,+h; the top surface of the EMCR film, the surface tractions should be 0, thus

n o,-n =0
| . ony=hthy @1

n 6 ,n =0

v

The above boundary conditions, Supplementary Eqs. (19-21), can be re-written as

u, =0
, Ony=0 22)
u, =0
sy
Gsexy = O-fexy
K, KfCDZ K,
O-seyy - 3 51 + 52 = O-feyy - 3 _51 + 52
f s
LK“ hf +h, (hf +7fhs , ony=h, (23)
K ’ K
f s
U, = uﬁc
Uy =Up

de)z Ky
3| =01 +0, |=, ony=hthy (24)

Supplementary Eqs. (22-24) can be further expressed as functions of ¢, p,, ¢, and p

17



on y=0 (25)

> Ony:hs—i_hf (27)

D- =0 (28)

The existence of roots requires the determinant of the coefficient matrix D in Supplementary

Eq. (28) to be zero, i.c. det(D) = 0. The corresponding electric field £, and critical wavelength

18



A, =27/k have been calculated in Supplementary Fig. 5b. For the device illustrated in Fig. 3,

the calculated critical electric field for wrinkling instability is £,~33.5 kV mm™, very close to the

experimentally observed value 27-32 kV mm™.

Finite-element analysis of the electro-cratering instability
We compute the electric fields for formation of craters by comparing the Gibbs free

energy between the cratered and flat states. The Gibbs free energy difference is

AT =TI m,,, (29)

Crater

where 11 and IT,,,, are the Gibbs free energy for cratered and flat states, respectively. At the

Crater
flat state, since the elastic energy is zero and the electric field through the elastomer laminate is

uniform, the Gibbs free energy can be expressed as

M, =——(H, +H,)4 (30)

where A is the surface area of analysis domain. For the cratered state, we calculate the Gibbs
free energy using a commercial finite element software, ABAQUS6.10.1. To approximate the
cratered geometry (i.e. wavelength and diameter in Fig. 4¢), we first compress the elastomer
bilayer with a rigid surface to different depths as shown in Supplementary Fig. 6. Subsequently,
we calculate the elastic energy and electrostatic potential energy of the elastomer bilayer based on
the cratered geometry'™. The Gibbs free energy difference decreases with the applied electric
field (Supplementary Fig. 6b). When the Gibbs free energy difference is equal to zero, the
corresponding electric fields are the electric fields in the EMCR film at the cratered states. The

corresponding electric fields are marked by the red crosses 'x’ in Supplementary Fig. 6b.
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