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Supplementary Information 

Supplementary Figures 

 

Supplementary Figure 1 | Covalently incorporating spiropyran into the Sylgard network. (a) 

A covalently crosslinked EMCR Sylgard network generated by combining Vinyl terminated 

PDMS, hydrosilylated PDMS and the bis-alkene functionalized spiropyran (as crosslinker) 

through a platinum-catalyzed hydrosilylation reaction. (b) Transition from the nearly colorless 

spiropyran to the colored merocyanine by a force-activated 6-π electrocyclic ring-opening 

reaction.  Removing the deformation applied to the EMCR allows for thermal ring closure to the 

spiropyran form within ~ 10 min, or within 3 min upon illumination with a visible light (e.g., 

green light).   
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Supplementary Figure 2 | (a) Absorption and (b) emission spectra of the stress-activated 

merocyanine within the EMCR elastomer.  
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Supplementary Figure 3 | Schematic illustrations of uniaxial and equibiaxial deformation of 

the EMCR elastomers. The stretches ( 0LL ) in three directions of the uniaxially deformed 

elastomer are 1 , 1 and  11 ; therefore, the first invariant is calculated as 

    22
111


 I . The stretches in three directions of the equibiaxially deformed 

elastomer are 1 , 1  and   2
1


 ; therefore, the first invariant is calculated as 

    42
112


 I .  
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Supplementary Figure 4 | The nominal stress vs. strain curve of the EMCR Sylgard 

elastomer. The EMCR elastomer shows negligible hysteresis for more than 11 cycles after the 

first strain loading cycle. The nominal stress-strain curves are fitted to the Arruda-Boyce model, 
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s f  , where s is the uniaxial nominal stress,  1 is the 

stretch, 
22 2  I is the first invariant, and n is a parameter that accounts for the stiffening 

effect. The fitted shear modulus of the EMCR elastomer is kPaf 3.139 , and the fitted n  is 

89.1 .  
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Supplementary Figure 5 | Linear stability analysis of the electro-wrinkling instability. (a) 

Schematic illustrations of the flat and wrinkled states. (b) The critical electric field and (c) the 

wavelength of the wrinkling instability as functions of film-substrate thickness ratio 
sf HH and 

modulus ratio 
sf  .  
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Supplementary Figure 6 | Finite-element calculations of the electro-cratering instability. (a) 

A 2D plane-strain model for the finite-element calculations of the electro-cratering instability. (b) 

The Gibbs free energy differences between cratered and flat states as functions of the applied 

electric field. When the Gibbs free energy difference is equal to zero, the corresponding electric 

fields marked by the red crosses ‘x’ are the electric fields in the EMCR film at the corresponding 

cratered states. (c) Simulated geometry and (d) the first invariant of the cratered states of the 

EMCR film under various electric fields. (e) The maximum first invariant in the EMCR film as a 
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function of the electric field. The red dash line denotes the critical electric field of the wrinkling 

instability calculated from Supplementary Figure 5.   
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Supplementary Figure 7 | Finite-element calculations of hexagonally-distributed craters. (a) 

A 3D prism model for the finite-element calculations for hexagonally-distributed craters. (b) 

Simulated geometry and (c) the first invariant of the cratered states of the EMCR film under 

various electric fields.  
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Supplementary Figure 8 | Topographical evolution of electrically-induced aligned craters 

and trenches. (a) A EMCR film under pre-stretch 16.1p  bonded on a buffer substrate. 

Simulated geometries for electrically-induced (b) aligned wrinkles and (c) aligned craters. (d) A 

EMCR film under pre-stretch 82.1p  bonded on a buffer substrate. Simulated geometries for 

electrically-induced (e) aligned wrinkles and (f) trenches.  
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Supplementary Figure 9 | Fabrication process of the elastomer laminate for electrically-

induced letter pattern. (a) A concaved letter “U” is ablated on a Kapton film (250 μm) by a laser 

ablation tool (Resonetics, USA). The depth of the letter is ~100 μm. A Sylgard solution (base to 

curing agent ratio of 5:1 by weight) is cast on the concaved letter “U” and is cured in an oven at 

65
o
C for 12 hours. The modulus of this Sylgard elastomer is around 2 MPa (15 times of the 

modulus of the EMCR film, and 150 times of the modulus of the buffer substrate). (b) The cured 

Sylgard is peeled off, and (c) a soft buffer substrate (base to curing agent 125:2 by weight) is then 

cast to embed the “U” object in the buffer substrate. (d) An equibaixially pre-stretched EMCR 

film ( 5.0p ) is subsequently bonded on the buffer substrate.  
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Supplementary Figure 10 | Finite-element calculations for electrically-induced pattern of 

letter “U”. (a) A EMCR film is first equibaixially pre-stretched by 5.0p , and (b) then 

bonded on a buffer substrate embedded with a rigid object. (c) Simulated geometry and first 

invariant in the EMCR film that displays a letter “U”.   
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Supplementary Figure 11 | The maximum first invariant Imax in the EMCR film by 

extremely deforming the film-substrate bilayer to deepest craters as a function of substrate-

film thickness ratio. According to Fig. 1g, the EMCR elastomer emits significant fluorescence 

(fluorescence intensity ratio S/S0>1) only when the first invariant I is larger than 6 (denoted as the 

red dash line); therefore, only 1fs HH can induce significant fluorescence emission of the 

EMCR elastomer.  
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Supplementary Methods 

Linear stability analysis of the electro-wrinkling instability 

An elastomer bilayer composed of an EMCR film and a buffer substrate is illustrated in 

Supplementary Fig. 5a. For simplicity, the protective insulator is not included in the current 

analysis. A voltage  is applied upon the elastomer bilayer. We denote the modulus, thickness, 

permittivity and applied electric field of the EMCR film as 
f , 

fH , 
f  and 

fE , respectively; 

and the corresponding quantities of the buffer substrate as s , sH , s  and sE , respectively. At 

the wrinkled state, the upper surface of the buffer substrate has a deflection 1 ( sH1 ), and 

the upper surface of the EMCR film has a deflection 2  (
fH2 ). The electric field in the 

elastomer bilayer follows 

ffss EE                                                                    (1) 

     21  ffss hEhE                                                 (2) 

Therefore, the electric fields can be calculated as  
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Since 11 sH and 12 fH , 22

ff E and 22

ssE  can be approximated as
1
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Mechanical equilibrium condition in the EMCR film can be expressed as  

02  fff Pu                                                 (7) 

Where  Tfyfxf uuu is the displacement vector in the EMCR elastomer, and 
fP  is the 

hydrostatic pressure that  enforces the incompressibility of the elastomers. The stress in the 

EMCR elastomer follows  

efmff σσσ                                                   (8) 
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where 
mfσ  and 

efσ  are mechanical stress tensor and electric-field-induced stress tensor in the 

EMCR film;  
yfxu ,
represent the y -direction gradient of  the x -direction displacement component 

of 
fu ;  and  Tff E0E  is the electric field vector in the elastomer.  

To solve the problem, we first consider the incompressibility of the elastomer, which can 

be expressed as  

0 fu                                                    (11) 

Based on Supplementary Eq. (11), a stream function 
f  can be used to express the 

displacement as  
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We perturb the solution of 
f and

fP  as  
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From Supplementary Eq. (7), we obtain  
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The general solutions for Supplementary Eq. (14) are  
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A similar analysis of the buffer substrate can give the corresponding s and sp for  the substrate 

as 
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There are eight unknown variables sic  and 
fic  in Supplementary Eqs. (15-18), where i=1-4. 

The unknown variables can be solved with the following boundary conditions.   

An y=0, the bottom surface of the substrate , the displacement of the buffer substrate is 

fixed and can be expressed as 

0u s ,    on y=0                                                 (19) 

 At y=hs, the top surface of the substrate, the force and displacement in elastomer bilayer 

should be continuous, thus  
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where  Tx 01n denotes the unit vector in x direction, and  Ty 10n denotes the unit 

vector in y direction.  

 At y=hs+hf, the top surface of the EMCR film, the surface tractions should be 0, thus 

 










0

0

yfy

yfx

nσn

nσn
,      on y=hs+hf                        (21) 

The above boundary conditions, Supplementary Eqs. (19-21), can be re-written as  
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Supplementary Eqs. (22-24) can be further expressed as functions of  f , fp , s  and sp  
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Substituting Supplementary Eqs. (15-18) in to Supplementary Eqs. (25-27), we obtain   
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The existence of roots requires the determinant of the coefficient matrix D  in Supplementary 

Eq. (28) to be zero, i.e.   0det D . The corresponding electric field 0E and critical wavelength 
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k 20   have been calculated in Supplementary Fig. 5b. For the device illustrated in Fig. 3, 

the calculated critical electric field for wrinkling instability is E0=33.5 kV mm
-1

, very close to the 

experimentally observed value 27-32 kV mm
-1

. 

 

Finite-element analysis of the electro-cratering instability 

We compute the electric fields for formation of craters by comparing the Gibbs free 

energy between the cratered and flat states. The Gibbs free energy difference is 

FlatCrater                                              (29) 

where Crater  and Flat  are the Gibbs free energy for cratered and flat states, respectively. At the 

flat state, since the elastic energy is zero and the electric field through the elastomer laminate is 

uniform, the Gibbs free energy can be expressed as  

 AHH
E

sfFlat 
2

2
                                           (30) 

where A  is the surface area of analysis domain. For the cratered state, we calculate the Gibbs 

free energy using a commercial finite element software, ABAQUS6.10.1. To approximate the 

cratered geometry (i.e. wavelength and diameter in Fig. 4c), we first compress the elastomer 

bilayer with a rigid surface to different depths as shown in Supplementary Fig. 6. Subsequently, 

we calculate the elastic energy and electrostatic potential energy of the elastomer bilayer based on 

the cratered geometry
1-3

. The Gibbs free energy difference decreases with the applied electric 

field (Supplementary Fig. 6b). When the Gibbs free energy difference is equal to zero, the 

corresponding electric fields are the electric fields in the EMCR film at the cratered states. The 

corresponding electric fields are marked by the red crosses ’x’ in Supplementary Fig. 6b.   
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