Supplementary Information for

Design of Stiff, Tough and Stretchy Hydrogel Composites via Nanoscale Hybrid Crosslinking and Macroscale Fiber Reinforcement

Shaoting Lin¹, Changyong Cao¹, Qiming Wang¹, Mark Gonzalez¹, John E. Dolbow², Xuanhe Zhao^{1,3*}

¹ Department of Mechanical Engineering and Materials Science, Duke University,

Durham, NC 27708, USA

². Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA

^{3.} Soft Active Materials Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

*Email: zhaox@mit.edu

Figure S1. Illustration of the area fractions of fibers along the applied force $A_{//}$ and perpendicular to the applied force A_{\perp} , and the distances between adjacent fibers along the applied force $\delta_{//}$ and perpendicular to the applied force δ_{\perp} .

Figure S2. Schematic illustration of the pure-shear test for measuring fracture energy of the fiber-reinforced hydrogel composites. (a) A piece of a fiber-reinforced hydrogel with a notch was stretched to a critical stretch of λ^c until the crack propagates. At the critical stretch, the fiber at the crack tip was stretched to its fracture stretch of λ_f^c . (b) The same piece of sample but without notch was stretched to λ^c with the nominal stress *s* recorded as a function of the stretch λ . (c) The fracture energy of the fiber-reinforced hydrogel composite can be calculated as $\Gamma = H \int_{1}^{\lambda^c} s d\lambda$.

Figure S3. The stress vs. strain curves of (a) a pure PAAm-Alginate gel and (b) a single thermoplastic-elastomer PLA fiber.

Figure S4. Comparison of stress-stretch hysteresis loops between samples soaked in EDTA for 8 hours (red curves) and un-soaked control samples (black curves): (a) The fiber-reinforced PAAm-Alginate hydrogels ($A_{II} = 7.69\%$). (b) Pure PAAm-Alginate hydrogels.

Figure S5. Compression tests on the artificial intervertebral discs with different constitutes: PAAm-Alginate hydrogel as nucleus pulposus surrounded by stretchy-fiber-reinforced PAAmalginate hydrogel composite as annulus fibrosus (Black line with triangles); pure PAAm-Alginate hydrogel (Blue line with round circles); and pure PAAm hydrogel (Red line with squares, 5.5 ml of 18.7% acrylamide with 377 μ L of 0.2g per 100ml N,N-methylenebisacrylamide as the crosslinker, 102 μ L of 0.2 M ammonium persulphate as the photo initiator and 8.2 μ L N,N,N',N'tetramethylethylenediamine as the crosslinking accelerator).

Video S1. Crack propagation in a notched sample of the stretchy fiber-reinforced PAAm-Alginate hydrogel composite under pure-shear test.