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Creasing-wrinkling transition in elastomer films under electric fields
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Creasing and wrinkling are different types of instabilities on material surfaces characterized by localized
singular folds and continuously smooth undulation, respectively. While it is known that electric fields can
induce both types of instabilities in elastomer films bonded on substrates, the relation and transition between
the field-induced instabilities have not been analyzed or understood. We show that the surface energy, modulus,
and thickness of the elastomer determine the types, critical fields, and wavelengths of the instabilities. By
independently varying these parameters of elastomers under electric fields, our experiments demonstrate
transitions between creases with short wavelengths and wrinkles with long wavelengths. We further develop
a unified theoretical model that accounts for both creasing and wrinkling instabilities induced by electric fields
and predicts their transitions. The experimental data agree well with the theoretical model.
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I. INTRODUCTION

When an elastomer film constrained on a substrate is
subject to an electric field, the initially flat surface of the
elastomer can bifurcate into two distinct modes of instabilities:
(i) creases or dimples characterized by localized singular
regions of self-contact [1,2], or (ii) wrinkles characterized
by continuously smooth undulation [3–8]. The electric-field-
induced creasing and wrinkling instabilities have been widely
implicated in detrimental failures of insulating cables [9,10],
organic capacitors [11], and dielectric-elastomer actuators
[2,12] and energy harvesters [13]. Conversely, controlling
these instabilities with electric fields has led to beneficial
applications as diverse as functional surfaces and interfaces
[3,4], biomedical devices [14], and on-demand patterning [15].
Since the pioneering work by Biot [16], existing studies
on creasing and wrinkling instabilities have been mostly
focused on elastomers under mechanical loads [17–22]. On
the other hand, the relation and transition between creasing
and wrinkling instabilities caused by applying physical fields,
such as electric fields, have not been analyzed or understood.
However, such an understanding is of timely importance to
both physics and technological applications of instabilities in
soft materials [3,4,14,15].

Here we present a comparative study on the creasing and
wrinkling instabilities in substrate-bonded elastomers subject
to electric fields. By combining theory and experiments,
we show that the surface energy γ , shear modulus μ, and
thickness H of the elastomer determine the electric-field-
induced instabilities: A ratio between the surface energy and
shear modulus of the elastomer defines a material-specific
length scale, i.e., elastocapillary length γ /μ [23–28]. If the
elastocapillary length is larger than the thickness of the
elastomer film, the wrinkling instability sets in the elastomer
under electric fields [4,5]. If the elastocapillary length is
comparable to or smaller than the film thickness, the creasing
instability occurs at localized regions on the elastomer surface.
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Transitions between wrinkling and creasing can be achieved
by independently varying an elastomer’s surface energy, shear
modulus, or thickness. In elastomers with the same thickness,
the wavelength of the wrinkles is much larger than that of the
corresponding creases.

II. EXPERIMENT

The experimental setup in the current study is illustrated in
Figs. 1(a) and 1(b) [2,4,12]. A layer of a silicone elastomer
(Sylgard 184, Dow Corning, USA) was bonded on a rigid
polymer substrate (Kapton, DuPont, USA) by spin-coating and
then curing at 65 ◦C for 12 h. Elastomer films with thickness
from 10 ± 2 μm to 59 ± 4 μm were obtained by varying the
spin-coating speed. The shear modulus of the rigid substrate
was measured to be ∼50 GPa, and that of the elastomer varied
from ∼161 Pa to 155 kPa by varying the elastomer’s cross-link
density (Fig. S1(d) in Supplemental Material [29]). The top
surface of the elastomer film was immersed in 10 wt % NaCl
solution, which acted as a transparent flexible electrode [2,12].
The surface energy of silicone elastomer in NaCl solution
is ∼ 0.04 N/m [30], but can be reduced to 0.0047 N/m by
adding a surfactant (Triton X-100, EMD Chemicals, USA)
in the solution above its critical micelle concentration [31].
A direct-current voltage (Mastsusada, Japan) was applied
between the NaCl solution and a metal plate bonded on the
substrate with a ramping rate of 10 V/s, until instabilities
occurred on the elastomer. The instabilities were recorded by
an optical microscope lens connected with a camera (Nikon,
Japan).

Figures 1(c)–1(f) give a set of electric-field-induced in-
stabilities observed on surfaces of elastomers with the same
surface energy γ = 0.04 N/m and thickness H = 10 ± 2 μm,
but different shear moduli μ ranging from 161 Pa to 38 kPa.
When the elastocapillary length is smaller than the film
thickness, i.e., γ /(μH ) = 0.1, a sufficiently high electric field
induces the creasing instability on the elastomer surface as
localized folds with a wavelength λ ≈ 1.5H [Fig. 1(c)]. To
validate the creases are concave and localized, the surface
topography of a highly deformed Sylgard film by electric
field was characterized by atomic force microscopy (AFM)
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FIG. 1. (Color online) Schematic illustration of the experimental setup to induce the creasing (a) and wrinkling (b) instabilities in elastomers
bonded on substrates with electric fields. The instabilities generated in elastomer films with the same thickness H = 10 ± 2 μm and surface
energy γ = 0.04 N/m but different shear moduli μ: 38 173 Pa (c), 6719 Pa (d), 1358 Pa (e), and 161 Pa (f).

(Fig. S2 [29]). In contrast, when γ /(μH ) = 26.9, the wrin-
kling instability occurs as smooth surface undulations with
much longer wavelengths, λ ≈ 10H [Fig. 1(f)]. As the shear
modulus of the elastomer decreases, a transition from the creas-
ing to wrinkling instabilities can be observed [Figs. 1(c)–1(f)].

III. THEORY

The experimental observations are qualitatively understood
as follows. The potential energy of the system (i.e., elastomer
and applied voltage) can be expressed as � = UE + UM + US ,
where UE is the electrostatic potential energy of the system,
and UM and US the elastic and surface energies of the
elastomer, respectively. While the flat state of the elastomer
gives the lowest elastic and surface energies, the wrinkled or
creased state has lower electrostatic potential energy than the
flat state. Therefore, the decrease of the system’s electrostatic
potential energy drives the wrinkling and creasing instabilities,
which are resisted by the increase of elastic and surface
energies of the elastomer. Depending on whether the surface
or elastic energy is dominant, the preferred mode of instability
is either wrinkling or creasing, respectively.

To quantitatively explain the phenomena, we develop a
unified theoretical model to account for both wrinkling and
creasing instabilities in elastomers under electric fields and
predict their transitions. For simplicity, we restrict our analyses
to plane-strain deformation of the elastomer. Because the
low ramping rate of the voltage approximates a quasistatic
loading, the elastomer is taken as an incompressible neo-
Hookean material with negligible viscoelastic effect [29].
Stress equilibrium in the elastomer requires ∇ · σ = 0, where
the total stress in the elastomer consists of the mechanical
and electrical stresses, i.e., σ = σM + σE . For a neo-Hookean
material, the mechanical stress can be expressed as σM =
μFFT − pI, where F is the deformation gradient tensor and
FT the transpose of F, p the hydrostatic pressure, and I

the unit tensor. The electrical stress in the elastomer can be
expressed as σE = εEE − ε(E · E)I/2, where ε is the electric
permittivity of the elastomer and E the electric-field vector in
the elastomer [32,33]. On the top surface of the elastomer, the
Young-Laplace relation prescribes σ · n = 2γ κn, where κ is
the mean curvature of the top surface, while the displacement
on the bottom surface of the elastomer is 0. When the
elastomer is at flat state, the deformation and electric fields
are homogeneous, i.e., F = I and E = [0 E]T , where E is the
applied electric field in the elastomer film.

A. Wrinkling instability

We now analyze the electric-field-induced wrinkling insta-
bility with a linear perturbation method following [7], given
that the initiation of wrinkling only involves small deformation
of the elastomer [29]. The bifurcated wrinkled state is required
to satisfy the equilibrium and boundary conditions described
above. Consequently, we find that the applied electric field to
induce the wrinkling instability depends on the wavelength of
the wrinkles via [7]

εE2

μ
= 2Hk

1 + 2e2Hk + e4Hk + 4e2HkH 2k2

−1 + e4Hk − 4e2HkHk
+ (Hk)2 γ

μH
,

(1)

where k is the wave number which gives the corresponding
wavelength of the wrinkle λ = 2πH/k. Based on Eq. (1),
we plot the normalized electric field E

√
ε/μ as functions of

Hk for various γ /(μH ) in Fig. 2(a). The lowest electric field
on each curve in Fig. 2(a) gives the critical electric field for
wrinkling in an elastomer with a specific value of γ /(μH ), as
well as the corresponding wavelength (or wave number) of the
wrinkle. We find the critical electric field is ∼2.49

√
μ/ε when

γ = 0; thereafter the critical field increases approximately
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FIG. 2. (Color online) The calculated electric field for inducing
the wrinkling instabilities in elastomers with various values of
γ /(μH ). The lowest electric field in each curve gives the critical
electric field for wrinkling instability.

linearly with
√

γ /(Hε), i.e.,

Ec
wrinkle ≈ 2.49

√
μ

ε
+ 0.46

√
γ

Hε
. (2)

It is noted that if the elastomer is taken to be a viscoelastic
solid, the calculated critical electric field for the wrinkling
instability is the same as Eq. (2) [29].

B. Creasing instability

We next analyze the creasing instability in the elastomer
under electric fields. Since the formation of creases involves
large deformation and singular electric field, the linear pertur-
bation method is not applicable here. Instead, we compare the
potential energy between the flat and creased states [2,21,34].
The analysis domain is shown in the inset of Fig. 3(a). For
simplicity, the rigid substrate is not included in the current
analysis. The width of the domain w is taken as a wavelength
of the crease pattern under plane-strain deformation [15]. Due
to symmetry of the crease, only half of the region is analyzed.
Considering the elastomer as an isotropic ideal dielectric [32],
the total potential energy of the system (unit length in the third
direction) can be expressed as

� = UE + UM + US = −
∫

S

1

2
ε|E|2dS

+
∫

S

WMdS +
∫

L

γ dL, (3)

where WM is the elastic energy density in the elastomer,
S is the area of the elastomer domain, and L the contour
of the top free surface of the elastomer (i.e., the interface
between the elastomer and the top electrode). To calculate the
critical electric field for the creasing instability, we compare
the potential energy between the creased and flat states.

At the flat state, considering the incompressibility of the
elastomer, the bottom-constrained film does not undergo any
deformation. The electric field in the elastomer film is E =
�/H , and the potential energy of the system at flat state is

�flat = − 1
2εE2Hw + γw. (4)

At the creased state, the elastomer surface folds against
itself to form a segment of self-contact with length a. We use

FIG. 3. (Color online) Surface-energy difference (a) and the
electroelastic potential energy difference (b) between creased and
flat states calculated by the finite-element model. (c) The calculated
potential energy difference between the creased and flat states 	�

for an elastomer with γ /(μH ) = 0.05 under various electric fields.
The electric field that satisfies 	� = 0 and ∂	�/∂(a/H ) = 0 gives
the critical electric field for the creasing instability.

a finite-element model based on software, ABAQUS 6.10.1, to
calculate the potential energy of the elastomer at the creased
state [2]. In order to maintain the convergence of the numerical
model, we neglect the effect of surface energy on the shape
of the crease [21]. The calculated surface-energy difference
between the creased and flat states is plotted in Fig. 3(a).
The surface-energy difference is found to be approximately
linearly related to the crease size a, i.e., 	US = Aaγ , where
A ≈ 1.81. Therefore, by dimensional analysis, the potential
energy difference between the creased and flat state can be
expressed as [21]

	� = μa2f (E
√

ε/μ,a/H ) + Aγa, (5)

where f (•) is a nondimensional function that characterizes the
electric and elastic potential energy difference between creased
and flat states. The calculated function μa2f (•) is plotted in
Fig. 3(b). In Fig. 3(c) we plot 	� as functions of a/H for
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FIG. 4. (Color online) The critical electric fields (a) and wavelengths (b) for wrinkling and creasing instabilities predicted by the theoretical
model and observed in experiments. The wrinkling instability in an elastomer with γ = 0.04 N/m, H = 10 μm, and μ = 681 Pa (c) can
be transited to the creasing instability by independently decreasing the elastomer’s surface energy to γ = 0.0047 N/m (d) or increasing its
thickness to H = 63 μm (e).

γ /(μH ) = 0.05 and various values of E
√

ε/μ. The formation
of crease requires 	� = 0 and ∂	�/∂(a/H ) = 0, the solving
of which gives the critical electric field for γ /(μH ) = 0.05
as shown in Fig. 3(c). In general, the critical electric field
for creasing instability can be approximately calculated as a
function of μ, γ , and H , i.e.,

Ec
crease ≈ 1.03

√
μ

ε
+ 1.88

√
γ

Hε
. (6)

When γ = 0, Eq. (6) recovers the critical electric field for
creasing instability on elastomers without surface energy, i.e.,
1.03

√
μ/ε [2]. It should be noted that the critical electric

field predicted by Eq. (6) is for the growth of creases [21].
Correspondingly, the measured critical field in experiment
[Fig. 4(a)] is also the electric field that generates a pattern of
creases in the film (i.e., for growth of creases). In addition, a
comparison between Figs. 3(b) and 3(c) shows that the surface
energy introduces an energy barrier for the nucleation and
growth of creases under the critical electric field [21]. Random
defects and surface roughness over a critical size anuc can
facilitate the elastomer to exceed the energy barrier [21]. For
example, Fig. 3(c) shows that defects with size on the order
of 0.05H will enable the nucleation and growth of creases
under the critical electric field. Figure S3 [29] further gives the
critical defect sizes to nucleate and grow creases under critical
electric fields in elastomers with various values of γ /(μH ).
Since the defects and roughness of elastomers usually cannot
be well controlled in experiments, the measured critical electric

fields from different samples may slightly deviate from the
theoretical prediction and each other, as shown in Fig. 4(a).

IV. RESULTS AND DISCUSSIONS

A combination of the theories for wrinkling and creasing
instabilities under electric field can predict the transition
between the two types of instabilities. We plot Eqs. (2) and
(6) in Fig. 4(a). This combination predicts that the wrinkling
instability has lower critical field and thus sets in when
γ /(μH ) > 1, while the creasing has lower critical field when
γ /(μH ) < 1. The theoretical prediction is consistent with the
experimental observations [Figs. 1(c)–1(f)]. To further validate
the theory, we record the electric-field-induced instabilities in
elastomer films with various thicknesses H , moduli μ, and
surface energy γ [Fig. 4(a)]. For each case of γ /(μH ) > 1, the
wrinkling instability with relatively long wavelength λwrinkle =
5 − 12H are observed. The wavelengths of the wrinkles also
match well with the theoretical prediction [Fig. 4(b)]. On the
other hand, when γ /(μH ) < 1, the creasing instabilities are
observed with a short wavelength λcrease = 1.5 − 3H , well
below the predicted wavelengths for wrinkling instability
[Fig. 4(b)]. When γ /(μH ) < 0.1, the wavelength of the
creases reaches λcrease ≈ 1.5H , consistent with the wavelength
previously observed on elastomers with negligible surface-
energy effect [2]. The measured critical electric fields for both
creasing and wrinkling instabilities also match consistently
with the theoretical predictions [Fig. 4(a)].
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The transition between wrinkling and creasing can also be
achieved by independently varying the elastomer’s thickness or
surface energy, in addition to changing its modulus [Figs. 1(c)–
1(f)]. As shown in Fig. 4(c), the wrinkling instability oc-
curs on an elastomer film with γ = 4 × 10−2 N m−1, μ =
681 Pa, and H = 10 μm. After reducing the surface energy to
γ = 4.7 × 10−3 N m−1 with surfactant, the creasing instabil-
ity sets in the same elastomer as localized dimples with a wave-
length much smaller than the corresponding wrinkles, since
γ /(μH ) has been reduced to 0.69 [Fig. 4(c)]. Furthermore,
we increase the thickness of the elastomer to H ≈ 63 μm,
while maintaining γ = 4 × 10−2 N m−1 and μ = 681 μm.
Since γ /(μH ) reaches 0.93, the creasing instability sets in
once again but with a wavelength larger than the previous one,
due to the increased film thickness. We also observe similar
transitions between creasing and wrinkling instabilities in a
different elastomer, Ecoflex (Smooth-On, USA), illustrating
the generality of the theory (Fig. S4 [29]).

Notably, the creasing-wrinkling transition has not been
observed in elastomers under mechanical compression, where
the creasing instability is preferable for all values of γ /(μH )
[21]. This discrepancy is due to the differences in the loads
and boundary conditions that the elastomers are subjected to
between previous and current studies. In previous studies, the
creasing instability is formed on mechanically compressed
elastomer films, which have been homogeneously deformed
prior to the instability. On the other hand, the wrinkling or
creasing in the current work is induced by electric field in a
substrate-bonded elastomer film, which maintains undeformed
until the instability sets in. Therefore, the contributions
from elastic and surface energies to the instabilities can
be significantly different in previous and current studies,
depending on whether the elastomer is homogeneously de-
formed or not. For example, the surface-energy difference
between the creased state and the flat state in the current
work is ∼1.81aγ , but it is only ∼ 0.45aγ for elastomer
films under mechanical compression [21]. Consequently,
for elastomers under mechanical compression, the critical
compressive strain for the creasing instability is always
lower than that for the corresponding wrinkling instability.
On the other hand, for elastomers under electric fields, the
critical electric field for creasing inability is lower when
γ /(μH ) < 1, but that for wrinkling instability is lower
when γ /(μH ) > 1.

We further explore the postbehaviors of electric-induced
creasing and wrinkling instabilities. While it is known that
the electric-field-induced creases can be further deformed
into craters [2], the postwrinkling morphology of elastomers
immersed in liquid electrodes is still not clear. In Video
S1 [29], we give the electric-field-induced evolution of the
surface morphology of an elastomer with γ /(μH ) = 1333
(it should be noted that the elastomer is in a liquidlike state
here, since its storage modulus is lower than the loss modulus,
as shown in Fig. S1(a) [29]). Under a ramping electric field, the
initial wrinkles in the elastomer quickly localize into ridges,
which are further deformed into domains with a spherical
shape [Video S1 [29] and Fig. 5(a)]. To better image the
evolution of the instability patterns, we apply electric fields
on partially cured elastomers to induce instabilities and then
cure the elastomers in the postwrinkling states. Thereafter, the

FIG. 5. (Color online) Schematic illustrations of the electric-
field-induced wrinkles evolving into localized ridges and drops
(a). Optical and scanning-electron microscope images of the ridges
(b) and drops (c) evolved from the wrinkles.

cured elastomers are imaged with optical or scanning-electron
microscopes. Figure 5(b) shows that the wrinkles in the par-
tially cured elastomers first evolve into ridges with their valleys
pushed down onto the surface of the rigid substrate. This is
because the electric field and therefore electric stress are higher
at the valley regions of the wrinkles than the peak regions.
The higher electric stress tends to push the valleys further
down, leading to a pattern of ridges [Figs. 5(a) and 5(b)]. After
the ridges develop, the electric stress tends to further deform
them into localized domains with a shape of drops [Figs. 5(a)
and 5(c)].

V. CONCLUSIONS

In summary, we present a unified model for the electric-
induced creasing and wrinkling instabilities in elastomers
bonded on substrates. Depending on whether the elasto-
capillary length γ /μ of the elastomer is larger or smaller
than its thickness H , the preferred mode of instability is
the wrinkling with long wavelength or creasing with short
wavelength, respectively. By independently varying the mod-
ulus μ, surface energy γ , and thickness H of elastomers,
our experiments achieve transitions between wrinkling and
creasing instabilities. The experimentally observed critical
fields and wavelengths for the instabilities match consistently
with the theoretical model. We further demonstrate that the
electric-field-induced wrinkles can further evolve into local-
ized ridges and drops. The theory and experiments presented
here advance the understanding of field-induced instabilities
in soft materials for diverse technological applications.
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