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We present a dynamic finite element formulation for dielectric elastomers that significantly alleviates the 
problem of volumetric locking that occurs due to the incompressible nature of the elastomers. We accom- 
plish this by modifying the Q1P0 formulation of Simo et al. [1], and adapting it to the electromechanical 
coupling that occurs in dielectric elastomers. We demonstrate that volumetr ic locking has a significant
impact on the critical electric fields that are necessary to induce electromechanical instabilities such as
creasing and cratering in dielectric elastomers, and that the locking effects are most severe in problems 
related to recent experiments that involve significant constraints upon the deformation of the elastomers.
We then compare the results using the new Q1P0 formulation to that obtained using standard 8-node 
linear and 27-node quadratic hexahedral elements to demonstrate the capability of the proposed 
approach. Finally, direct comparison to the recent experimental work on the creasing instability on
dielectric polymer surface by Wang et al. [2] is presented. The present formulation demonstrates good 
agreement to experiment for not only the critical electric field for the onset of the creasing ins tability,
but also the experimen tally observ ed average spacing between the creases.

� 2013 Elsevier B.V. All rights reserved.
1. Introductio n

Dielectric elastomers (DEs) are a class of soft, active materials 
that have attracted significant attention in recent years [3–8]. They 
have been found to provide excellent overall performance in actu- 
ation-based applications, including high specific elastic energy 
density, good efficiency and high speed of response. Furthermore,
DEs are typically lightweight, flexible and inexpensive materials 
which makes them ideal candidates for high performance, low cost 
applications where fabricatio n of the DEs into a wide range of
shapes and structures can easily be realized [9].

While DEs have been found to exhibit good performance with 
respect to a variety of actuation-rel evant propertie s, including 
strain, actuation pressure , efficiency, response speed, and density 
[10], the key source of the technologic al excitement surrounding 
DEs stems from the fact that, if sandwiched between two compli- 
ant electrodes that apply voltage to the elastomer, the DE can ex- 
hibit both significant thinning and in-plane expansion. This 
unique large deformat ion-based actuation capability has led to
many interesting applicati ons for DEs, including the potential to
harvest energy from sources as diverse as human muscle motion 
and ocean waves, medical devices, and perhaps most importantly ,
artificial muscles [3,4,7]. Furthermore, recent experimental studies 
by Wang et al. [11] and Shivapooja et al. [12] have exploited the 
large deformation and surface instabilities studied in DEs in the 
present work to generate dynamic surface patterns, and antifoul- 
ing coatings, respectively. In both of these cases, it is the large 
deformat ion and instability of the polymer that enables the novel 
applicati ons, which may not be achieved with traditional electro- 
active materials. In addition, the voltage required to deform the 
polymer scales with the thickness of the polymer, which therefore 
may not be very high for thin polymer films.

Due to these and other potential ly groundbreak ing applicati ons,
starting about 15 years ago with the seminal work of Pelrine et al.
[10,13], there have been many experimental studies to elucidate 
the electrom echanical behavior and properties of DEs [14–25].

Along with the experimental studies, many analytic theories 
that explain various aspects of the electromechan ical behavior 
and properties of DEs have recently been develope d [26–
33,20,21 ]. Many of these theories have as their basis the original 
works in electro-elastici ty, for example that of Maugin [34]. Fur- 
thermore , there have recently appeared a range of analytical stud- 
ies on the stability and instability phenomena both in DEs [35–38],
and other magneto -elastic materials [39].

While these analytic theories have led to many key insights 
regarding the electrom echanical behavior and instabilities of DEs,
it has been difficult to use these analytic theories to study the 

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cma.2013.03.020&domain=pdf
http://dx.doi.org/10.1016/j.cma.2013.03.020
mailto:parkhs@bu.edu
http://dx.doi.org/10.1016/j.cma.2013.03.020
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


H.S. Park et al. / Comput. Methods Appl. Mech. Engrg. 260 (2013) 40–49 41
inhomogene ous deformat ion and failure mechanisms, i.e.
wrinkling [19,21], electromechan ical snap-throug h instability 
[13], and more recently creasing and cratering instabilities 
[2,40,11] that have been observed experimentally.

Because of this, several papers have recently appeared propos- 
ing finite element (FEM) formulations for DEs [41–44,33,45–49] .
The approaches of Zhao and Suo [41] and O’Brien et al. [44] are
similar in that neither formulat ion accounted for the full electro- 
mechanical coupling, i.e. electrostatic effects were accounted for 
via inclusion in the mechanical free energy, while no electrostatic 
governing equation was solved. The approach es of Vu et al. [42]
and Zhou et al. [43] are similar in that both utilized finite deforma- 
tion, fully coupled electromechan ical equations that were solved 
neglecting inertia. While the work of Vu et al. [42] did not consider 
electromechan ical instabilities, such effects were considered by
Zhou et al. [43], though difficulties in tracking the entire history 
of the electromechan ical instabilit y were found due to the static 
formulation . Wissler and Mazza [45] solved the coupled electro- 
mechanical problem using Poisson’s equation for the electrost atics,
though again, electromechan ical instabilit ies were not considered.
Recently, Park and Nguyen [46] and also Khan et al. [47] proposed
viscoelastic FEM models for DEs.

Overall, there exist two major unresolved issues in the existing 
FEM modeling literature. First, none of the previous approaches 
have demonstrat ed the ability to capture inhomogeneous deforma- 
tion and failure modes (creasing, cratering, snap-through, wrin- 
kling) that result from the electromechan ical instability within a
large deformation framework. Second, none of the previous ap- 
proaches has been able to resolve the electromechan ical instabili- 
ties while ensuring that the incompres sible nature of the material 
response, and thus avoidance of volumetric locking effects, is ac- 
counted for.

The first issue was resolved through a recent FEM formulation 
proposed by Park et al. [50], who utilized inertia to capture electro- 
mechanical instabilit ies that arise through the constituti ve model 
and field equations of Suo et al. [26]. Inertia is important for this 
approach as quasistatic FEM techniques, without special tech- 
niques such as the arclength method, fail once the loss of ellipticity 
(corresponding to softening in the voltage-cha rge curve for DEs)
occurs. In contrast, the use of inertia enables the simulation to con- 
tinue into the electromechan ical softening regime, as demon- 
strated by Park et al. [50] and Park and Nguyen [46]. The role of
inertia in electrom echanically coupled problems is thus exactly 
analogous to its role in single field mechanical strain softening 
problems [51]. Using the dynamic formulation , they were able to
demonstrat e the basic electrom echanical instabilit ies that occur 
in DEs under electrost atic loading, i.e. snap-throug h instabilities,
surface wrinkling and creasing.

However , the work of Park et al. [50] did not resolve the second 
issue, i.e. that of volumetric locking that arises due to the incom- 
pressible material response of the DEs. As discussed by Belytschko 
et al. [52], FEM modeling of volumetric locking has a lengthy his- 
tory, though the salient point is that the vast majority of the liter- 
ature has been targeted towards single-field (i.e. mechanical-onl y)
problems. In the present work, we extend one such approach to
alleviating volumetric locking, the classic three-field Hu–Washizu
Q1P0 formulation of Simo et al. [1], to problems involving coupling 
of the mechanical and electrostatic domains. We note that while 
the viscoelastic formulation of Park and Nguyen [46] also utilized 
the Q1P0 formulation of Simo et al. [1] to alleviate volumetr ic lock- 
ing, an explicit comparison to experime ntal results to demonstrat e
the necessity and accuracy of the electromechan ical Q1P0 formula- 
tion was not performed. Because of this, we also demonstrat e the 
capability of the proposed approach in accurately capturing the 
experimental ly observed critical electric fields needed to induce 
electromechan ical instabilities, as well as the experimental ly
observed spacing by Wang et al. [2]. Comparisons are also made 
to standard three-dimens ional linear and quadratic hexahedr al
FEs to demonstrat e the utility of a specializ ed formulation to alle- 
viate volumetric locking effects.
2. Backgrou nd: nonlinear electromechani cal field theory 

The numerical results we present in this work are obtained 
using a FEM discretizatio n of the electromechan ical field theory re- 
cently proposed by Suo et al.[26], and recently reviewed by Suo 
[27]. In this field theory, at mechanical equilibrium , the nominal 
stress siJ satisfies the following (weak) equation:Z

V
siJ
@ni

@XJ
dV ¼

Z
V

Bi � q
@2xi

@t2

 !
nidV þ

Z
A

TinidA; ð1Þ

where ni is an arbitrary vector test function, Bi is the body force per 
unit reference volume V ;q is the mass density of the mater ial and Ti

is the force per unit area that is applied on the surface A in the ref- 
erence configuration.

For the electrostatic problem, the nominal electric displacemen t
~DI satisfies the following (weak) equation:

�
Z

V

~DI
@g
@XI

dV ¼
Z

V
qgdV þ

Z
A
xgdA; ð2Þ

where g is an arbitrary scalar test function, q is the volumetric 
charge density and x is the surface charge density , both with re- 
spect to the reference configuration.

We make several relevant comments with regards to the field
equation s in (1) and (2). First, if the vector test function ni is chosen 
to represent a virtual displacement dui, the mechanical weak form 
in (1) represents the well-known statement of virtual mechanical 
work, where the nominal stress SiJ is work conjugate to the gradi- 
ent of virtual displacemen t dui. Second, if the electrical test func- 
tion g in (2) is chosen to be the virtual potential d/, then the 
electrost atic weak form in (2) can also be interpreted within a vir- 
tual work context, where the nominal electric displacemen t ~DI is
work conjugate to the gradient of virtual potential d/. Third, the 
strong form of the mechanical weak form in (1) is the well-known 
momentum equation , while the strong form of the electrost atic 
weak form in (2) is the well-known Gauss’s law.

Because we are solving an electrom echanical boundary value 
problem, it is relevant to discuss the details of the boundary condi- 
tions for each field equation. Specifically, the electromechan ical 
boundary conditions are in fact the standard boundary conditions 
for each of the single domain problems. Specifically, these are ap- 
plied tractions and displacements for the mechanical domain and 
applied voltages and charges for the electrostatic domain. No
non-stand ard boundary conditions are needed in the present 
formulat ion.

We also note that the weak formulation s in (1) and (2) do not 
account for the possible effect of the surrounding free space. How- 
ever, both for the problem we analyze in the current work, as well 
as the vast majority of experime ntal DE configurations, the DE is
actuated by coating it with electrodes and the effect of electric 
fields around the edges of the electrode s is negligible. For other sit- 
uations in which an air gap exists between one electrode and the 
polymer, it is likely that the electric field in the air will have a sig- 
nificant effect on the instability mechanism [53].

We note that the theory of Suo et al. [26] is not the only nonlin- 
ear electromechan ical field theory that exists; earlier works by
Dorfman n and Ogden [29,30] and McMeeking and Landis [31] also
proposed nonlinear electromechan ical field theories for deform- 
able elastomeric materials . For this work, we utilize the governing 
nonlinear electromechan ical field equation s of Suo et al. [26] for
the following five reasons: (1) The field variables (mechanical
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force, electric potential) are both experime ntally measurable quan- 
tities; (2) The theory circumvents the fact that the true electric 
field and true electric displacemen t are not work conjugate in a
dielectric solid; (3) The theory circumve nts the fact that the force 
between two electric charges in a dielectric solid is not a measur- 
able quantity; (4) The resulting field equations are the standard 
mechanical momentum equation and the electrostatic Gauss’s 
equation, which can be approximated using the FEM in a straight- 
forward manner with standard boundary condition s; (5) As shown 
by Suo et al. [26], in the limiting case of a fluid dielectric , the theory 
recovers the Maxwell stress. A more detailed discussion regarding 
these issues can be found in the works of McMeeking and Landis 
[31] and Suo et al. [26]. Having made note of these notions, we
move forward to the discussion of the resulting FEM formulation.

2.1. Constitutive model of an ideal dielectric elastomer 

As the governing field equation s in (1) and (2) are decoupled,
the electrom echanical coupling occurs through the material laws.
The hyperelastic material law we will utilize in this paper has been 
utilized in the literature to study the nonlinear deformation s of
electrostatic ally actuated polymers, i.e. see the works of Vu et al.
[42] and Zhao and suo [54], and has been shown to agree well with 
experimental results [55]. We do not account for dissipative mech- 
anisms, i.e. viscoelasti city or current leakage [56], or thermal ef- 
fects in the present work.

Due to the fact that the DE is a rubber-like polymer, phenome- 
nological free energy expressions are typically used to model the 
deformation of the polymer chains; in the present work, we will 
utilize the form [42,54]

WðC; ~EÞ ¼ lW0 �
1
2

kðln JÞ2 � 2lW 0
0ðI1 ¼ 3Þ ln J � �

2
JC�1

IJ
~EI

~EJ ; ð3Þ

where W0 is the mechanical free energy density in the absence of
an electric field, � is the permi ttivity of the mater ial, J ¼ detðFÞ,
where F is the continuum deformation gradient, C�1

IJ are the com- 
ponents of the inverse of the right Cauchy-G reen tensor C; k is the 
bulk modulus , l is the shear modulus and ~E is the nominal elec- 
tric field. The free energy in (3) has been termed the ideal dielec- 
tric elastom er by Zhao et al. [38] for reasons elabora ted upon 
below.

We will model the mechanical behavior of the DE using the 
well-known [57] rubber hyperelastic function, where the mechan- 
ical free energy W0 in (3) is written as

W0ðI1Þ
l

¼ 1
2
ðI1 � 3Þ þ 1

20N
ðI2

1 � 9Þ þ 11
1050 N2 ðI

3
1 � 27Þ

þ 19
7000 N3 ðI

4
1 � 81Þ þ 519 

673750 N4 ðI
5
1 � 243Þ; ð4Þ

where N is a measure of the cross link density , I1 is the trace of C,
and where the Arruda–Boyce model reduces to a Neo–Hookean
model if N !1. We emphasize that previous experime ntal stud- 
ies of Wissler and Mazza [23] have shown that the Arruda–Boyce
model performs very well in capturing the large deformati on
behavior of DEs. We also note that simpler hyperela stic models 
such as the Gent model may be used in place of the Arruda–Boyce
model.

Physically, the equilibrium free energy W in (3) represents the 
fact that an elastomer is a three-dim ensional network of long 
and flexible polymers, held together by crosslinks. Each polymer 
chain consists of a large number of monomers. Consequently, the 
crosslinks have negligible effect on the polarization of the mono- 
mers - that is, the elastomer can polarize nearly as freely as a poly- 
mer melt. As an idealization, we may assume that the dielectric 
behavior of an elastomer is exactly the same as that of a polymer 
melt.
Furthermore, in an elastome r, each individua l polymer chain 
has a finite contour length. When the elastomer is subject to no
loads, the polymer chains are coiled, allowing a large number of
conformati ons. Subject to loads, the polymer chains become less 
coiled. As the loads increase, the end-to-e nd distance of each poly- 
mer chain approaches the finite contour length, and the elastome r
approach es a limiting stretch. On approaching the limiting stretch,
the elastomer stiffens steeply, which is captured by the Arruda- 
Boyce hyperelastic model in (4).

3. Finite element discretiz ation 

We now present the FEM discretizatio n of the governing elec- 
tromechani cal field equations in (1) and (2); we note that this sec- 
tion presents in a slightly different form the formulation of Park 
et al. [50], but is given for completenes s because the Q1P0 formu- 
lation that is the main result of this paper builds upon the earlier 
work.

The unknown FEM nodal degrees of freedom are the accelera- 
tions a in the mechanical domain, and the electric potential U in
the electrostatic domain, where the nominal electric field
~E ¼ � @UðX;tÞ

@X . Both the mechanical displacemen t and the electric po- 
tential are discretized using standard FE shape functions, i.e.

xiðX; tÞ � Xi ¼ NaðXÞuaiðtÞ;
UðX; tÞ ¼ NaðXÞUaðtÞ; ð5Þ

while the test functions n and g in (1) and (2) are also interpolated 
using the same shape functions to ensure a Bubnov–Galerkin 
formula tion.

Because our simulation is dynamic, and thus involves integra- 
tion through time, and because the linearization of the governing 
equation s results in a nonlinear system of equations to solve that 
involves iterations for each time step, we first define some impor- 
tant notation to avoid confusion in the section ahead. Specifically,
we use the following notation that involves both superscripts and 
subscript s, i.e. Rn

ðiþ1Þ. The subscript ðiþ 1Þ indicates the iteration 
count at time step n, which is the superscript.

Discretizing (1) and (2) using the FEM shape functions, the bal- 
ance equation s at time tnþ1 can be written in residual form as

Rnþ1
m ¼ fnþ1

m;ext � ðManþ1 þ fnþ1
m Þ; ð6Þ

Rnþ1
e ¼ fnþ1

e;ext � fnþ1
e ;

Rnþ1 ¼
Rnþ1

m

Rnþ1
e

 !
;

where

f nþ1
m ¼

Z
V

siJ
@Na

@XJ
dV ; ð7Þ

f nþ1
m;ext ¼

Z
V

BiNadV þ
Z

A
TiNadA;

f nþ1
e ¼

Z
V

~DJ
@Na

@XJ
dV ;

f nþ1
e;ext ¼

Z
V

qNadV þ
Z

A
xNadA;

where Rnþ1
m is the mechanical residua l at time nþ 1;Rnþ1

e is the elec- 
trostatic residua l, fnþ1

m and fnþ1
e are the internal mechan ical and elec- 

trostatic forces, respectivel y, and fnþ1
m;ext and fnþ1

e;ext are the externall y
applied mecha nical and electrostat ic forces, respec tively.

Because the mechanical problem is time-depend ent due to the 
inertial terms, the mechanical displacements must be found from 
the acceleration using standard time-integrati on techniqu es. We
utilize the Newmark implicit time integrator [58,52], which is
unconditi onally stable if the time integrator paramete rs are set 
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to b ¼ 1=4 and c ¼ 1=2. Choosing these parameters in conjunction 
with the Newmark integrator leads to the following predicted dis- 
placements , velocities and accelerati ons based upon the well- 
known average acceleration, or trapezoidal rule 

~dnþ1 ¼ dn þ Dtvn þ Dt2 1
2
� b

� �
an; ð8Þ

~vnþ1 ¼ vn þ Dtð1� cÞan;

~anþ1 ¼ an;

where the tilde indicate s the predicted value. The updated, or cor- 
rected values are then given as

dnþ1 ¼ ~dnþ1 þ bDt2anþ1; ð9Þ
vnþ1 ¼ ~vnþ1 þ cDtanþ1:

From the corrected part of the time integration algorithm in (9), an
important relation ship that we utilize below in deriving the linear- 
ized FEM equations is

@dnþ1

@anþ1 ¼ bDt2I; ð10Þ

where I in (10) is an identity vector.
We now linearize the residual mechanical and electrostatic 

equations in (6) to obtain a Newton solution of the electromechan -
ically coupled equation s by using the standard Taylor expansion 

Rðiþ1Þ ¼ RðiÞ þ
@R
@r

Dr; ð11Þ

Dr ¼
Da
DU

� �
;

where the subscript in parenthesis in (11), i.e. ðiþ 1Þ and ðiÞ, indi- 
cate iteration numbers and not time steps. We linearize the residua l
by taking the derivativ e @R

@r to obtain 

@Rm

@r
¼ @Rðiþ1Þ;m

@dðiþ1Þ

@dðiþ1Þ

@aðiþ1Þ
Daðiþ1Þ þ

@Rðiþ1Þ;m

@Uðiþ1Þ
DUðiþ1Þ þMDaðiþ1Þ; ð12Þ

@Re

@r
¼ @Rðiþ1Þ;e

@dðiþ1Þ

@dðiþ1Þ

@aðiþ1Þ
þ @Rðiþ1Þ;e

@Uðiþ1Þ
DUðiþ1Þ;

where the notation in (12) implies that all quantities are calculate d
for each iteration ðiþ 1Þ that are needed to fully updat e the FEM no- 
dal accelerat ion a and electric potential U from time step tn to tnþ1.
Plugging (10) into (12), we obtain 

@R
@r
¼ Mþ bDt2Kmm Kme

bDt2Kem Kee

 !
; ð13Þ

Kmm ¼
@fðiþ1Þ;m

@dðiþ1Þ
¼
Z

V
HiJkL

@Na

@XJ

@Nb

@XL
dV ;

Kme ¼
@fðiþ1Þ

@Uðiþ1Þ
¼ KT

em ¼
@fðiþ1Þ;e

@dðiþ1Þ
¼ �

Z
V

ekJL
@Na

@XJ

@Nb

@XL
dV ;

Kee ¼
@fðiþ1Þ;e

@Uðiþ1Þ
¼ �

Z
V
�JL
@Na

@XJ

@Nb

@XL
dV ;

HiJkLðC; ~EÞ ¼ 2dik
@WðC; ~EÞ
@CJL

þ 4FiMFkN
@2WðC; ~EÞ
@CJM@CLN

;

eiJLðC; ~EÞ ¼ �2FiM
@2WðC; ~EÞ
@CJM@~EL

;

�JLðC; ~EÞ ¼ �
@2WðC; ~EÞ
@~EJ@~EL

:

Explicit expressions for the mechan ical ðHiJkLÞ, electrom echanical 
ðeiJLÞ and electrostatic ð�JLÞ stiffnesses as derived from the coupled 
electromec hanical free energy in (3) are given in Park et al. [50].
Because the solution of the residual in (11) requires that 
Rðiþ1Þ ¼ 0, the incremen t of the FEM nodal acceleration Da and elec- 
tric potential DU for each iteration can be obtained as

Daðiþ1Þ

DUðiþ1Þ

� �
¼ @R

@u

� ��1 RðiÞ;m
RðiÞ;e

� �
: ð14Þ

Convergen ce occurs when there is no further change in nodal accel- 
eration Da and potenti al DU. At that point, the prescribed mechan -
ical or electrostati c loading is increased, and (14) is solved 
iteratively again until a new converg ed solution is obtained.

4. Q1P0 Formulati on

4.1. Multiplicativ e split and constitutive equations 

We now present the Q1P0 FEM formulat ion for DEs based on
the approach of Simo et al. [1]. The Simo et al. work relies upon 
a three-field Hu–Washizu variation principle that treats the dis- 
placemen ts, pressure and Jacobian as independen t variables along 
with a kinematic split that decomposes the deformation gradient F
into deviatoric and volumetric components.

We first introduce the relevant kinematic variables. Given a mo- 
tion vðX; tÞ, we can define the deformation gradient F and Jacobian 
J as

F ¼ @v
@X

; ð15Þ

J ¼ det F:

We additionally define

�F ¼ H1=3F̂; ð16Þ
F̂ ¼ J�1=3F:

where H is a new kinemati c variable . The key idea underlying the 
multiplica tive split of the deformati on gradient into volumetric 
and deviato ric component s is that while in the continuou s case 
HðX; tÞ ¼ JðX; tÞ such that �F ¼ F, this identit y does not hold when 
construc ting a discrete, or finite-dimensional approx imation. The 
modified right Cauchy–Green tensor C can now be written as

C ¼ FT F; ð17Þ
Ĉ ¼ J�2=3C ¼ F̂T F̂;

Due to the modification of the deformatio n gradient and Cauchy–
Green tensors in (16) and (17), the free energy of the ideal DE in
(3) is now written in the form 

W ¼ ~WðH2=3Ĉ; ~EÞ; ð18Þ
W ¼ �WðH1=3F̂; ~EÞ:

where we note that all resulting modifications to the free energy are 
to the mechanical kinemati c variables, and not the nominal electric 
field. The correspondi ng first ðPÞ and second ðSÞ Piola–Kirchhoff 
stress tensors are then obtained via 

�S ¼ @
~WðC; ~EÞ
@C

�����
C¼H2=3 Ĉ

; ð19Þ

�P ¼ @WðF; ~EÞ
@F

�����
F¼H1=3 F̂

:

4.2. Three-field Lagrangian and FEM equations 

The modified kinematic variables are then utilized in the fol- 
lowing Lagrangian:



44 H.S. Park et al. / Comput. Methods Appl. Mech. Engrg. 260 (2013) 40–49
Lðd;H; pÞ ¼
Z

V
WðH1=3F̂ÞdV þ

Z
V

pðJ �HÞdV þPextðdÞ � Kð _dÞ;

ð20Þ

where PextðdÞ is the external work due to body forces and pre- 
scribed tractions, Kð _dÞ is the kinetic energy, and d is the FEM nodal 
displace ments. It is clear that the purpose of the pressure p in (20) is
to enforce the incompr essibility conditio n in the discrete formula -
tion, i.e. J ¼ H. Furthermore , as shown by Simo et al. [1], the pres- 
sure p is eliminat ed at the elemen t level such that the resulting 
FEM equation s include only the standard displacement (or acceler- 
ation) nodal degrees of freedom.

The Q1P0 nomenclature emerged because while the nodal dis- 
placement field is interpolated using standard, linear FEM shape 
functions, the element- level pressure and volume are approxi- 
mated using a lower order, constant approximat ion. The Simo 
et al. [1] formulation also utilizes a projection approach, in which 
the shape function gradients B are decomposed into volumetric 
and deviatoric components , i.e.

�BI ¼ BI
dev þ �BI

vol; ð21Þ

where the explicit expressions for the �B shape function gradients 
can be found in Hughes [58], and where the volumet ric component 
�BI

vol in (21) is approx imated by the mean dilation of the element 
which results in a lower order constant approx imation for the vol- 
umetric deformation and pressure. We note that while B can also 
refer to the left Cauchy–Green deformat ion tensor, in the present 
work we use B to refer exclusively to FEM shape function gradients,
as the left Cauchy–Green tensor is not utilized anywhe re in this 
manuscrip t.

The resulting linearized , incremental FEM equations from the 
mixed projection approach were derived by Simo et al. [1], and 
take the form 

KQ1P0Dd ¼ �R; ð22Þ
KQ1P0 ¼ Kgeo þ Kmat þ Kp;

R ¼ fext � f int � fkin
;

where Kgeo is the standard geometric contributio n to the stiffness 
matrix, Kmat is the standard material contributio n to the stiffness 
matrix, Kp is a non-standard contributio n to the stiffness matrix 
that arises due to the presence of the new kinemati c variable H
in (20) [1,59], fext are external forces, f int are interna l forces, and 
fkin are kinetic forces due to inertia. The modified shape functions 
�B are presen t in the internal force, i.e.

f int ¼
Z

V
ð�BÞT �rdv; ð23Þ

where �r is the Cauchy stress evaluated using the modified defor- 
mation gradient �F in (16), and the integr al in (23) is evaluated in
the current configuration dv. In the present work, we utilize the 
numerica l finite differen t approach of Miehe [60] to calculate 
the stiffness matrix KQ1P0 in (22) based on the interna l force in
(23).

4.3. Q1P0 for electromech anical coupling 

We now discuss the modification to the governing FEM equa- 
tions in (13) that must occur to incorporate the mixed, projec- 
tion-based Q1P0 approach. Specifically, there are three stiffness 
matrices that may be impacted, i.e. Kmm;Kme ¼ KT

em, and Kee. Of
these three stiffnesses matrices, the electrical stiffness matrix Kee

is not impacted by the Q1P0 formulat ion because it is found purely 
by different iation with respect to the nominal electric field ~E. On
the other hand, the mechanical stiffness matrix Kmm is exactly 
the Q1P0 stiffness matrix in (22), i.e.
Kmm ¼ KQ1P0 ¼ Kgeo þ Kmat þ Kp: ð24Þ

This leaves one stiffness matrix left to modify , the mixed electrome- 
chanic al stiffness matrix Kme. We derive this term by starting with 
the interna l mechanical force, i.e.

f int 
m ¼

Z
V

�BT �rdv ; ð25Þ

f int 
m ¼

Z
V

�BT 1
J

FSFT
� �

dv jF¼H1=3 F̂;

where we have converted the Cauchy stress �r to the second Piola–
Kirchhof f stress �S in (25). The electromec hanical stiffness is ob- 
tained via 

Kme ¼
@f int 

m

@~E
¼
Z

V

�BT 1
J

F
@�S
@~E

FT
� �

Bdv jF¼H1=3 F̂; ð26Þ

@�S
@~E
¼ eiJLðC; ~EÞ ¼ �2FiM

@2WðC; ~EÞ
@CJM@~EL

jC¼H2=3 Ĉ:

(25) makes clear that in extending the original Q1P0 formula- 
tion of Simo et al. [1] for the electromechan ically coupled system 
of equations that describes DEs as derived by Park et al. [50], the 
major change (aside from the additional pressure-dep endent stiff- 
ness contribution Kp for the purely mechanical problem) lies in the 
fact that the electromechan ical stiffness matrices Kme ¼ KT

em are
mixed in the sense that the shape function gradient that comes 
from the mechanical domain is the projection gradient �B, while 
the shape function gradient that comes from the electrost atic do- 
main is the standard shape function gradient B. This difference 
emerges because no modification to the electrostatic kinematic 
variables, i.e. the nominal electric field ~E or potential U is required 
to satisfy the incompres sibility constraint, which occurs purely in
the mechanical domain. The electrost atic force and stiffness are 
not modified except for the fact that the deformation gradient or
stretch tensor that is used to evaluate them are done according 
to (16) and (17).

These modified stiffness matrices are then substituted into the 
previous governing FEM equations in (13), resulting in the new 
Q1P0 FEM formulation for DEs shown below:

Daðiþ1Þ

DUðiþ1Þ

� �
¼ @R

@r

� ��1 RðiÞ;m
RðiÞ;e

� �
: ð27Þ

where

@R
@r
¼ Mþ bDt2KQ1P0 Kme

bDt2Kem Kee

 !
; ð28Þ

where the expression for KQ1P0 can be found in (24).

5. Numeric al and Experimen tal Results 

All numerical calculations were performed using the Sandia- 
develope d simulation code Tahoe [61] using regular meshes of
either 8-node linear hexahedral elements or 27-node quadratic 
hexahedr al elements in 3D. The quadratic elements are utilized 
for comparison as it is well-known [52] that they are able to alle- 
viate, though not eliminate, the effects of volumetric locking. A
lumped mass matrix was used for all elements and calculations .

The problem we consider is motivated by the recent experime n-
tal results of Wang et al. [2,40,11], who attached a DE to a rigid 
substrate and subjected it to an increasing direct-cur rent (DC) volt- 
age. The voltage induced an electric field across the layer of the DE.
Once the applied electric field in the DE reached a critical value,
~Ec ¼

ffiffiffiffiffiffiffiffiffi
l=�

p
, an electromechan ical instability was observed , where- 

by the initially flat surface of the DE (Fig. (1a)) develope d a pattern 
of creases (Fig. (1b)), followed by subsequent formatio n of deep 



Fig. 1. Experimental results of electromechanical instability on the surface of a DE bonded on a rigid substrate: optical microscopic images of the DE at the (a) flat and (b)
creased states, (c) schematic illustration of the aligned creases, and (d) the relation between the wavelength of the creases k and the thickness of the DE film h.

Fig. 2. Problem schematic showing length L and height H of the quasi-3D strip 
(thickness t is into the page), along with imposed mechanical and electrical 
boundary conditions. Note that the imposed voltage on the top surface U ¼ UðtÞ
indicates that the voltage U is applied in a linear ramp format, starting from U ¼ 0
at t ¼ 0.
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craters from the initial creases. By pre-stretchi ng the DE along one 
direction prior to bonding it on the substrate, Wang et al. [11]
aligned the creases into parallel lines (Fig. (1c)). The average dis- 
tance between adjacent creases k was found to be approximat ely 
the same as the thickness of the pre-stretched film h, i.e. k � h
(Fig. (1d)). It is important to note that this expression for the crit- 
ical electric field, i.e. ~Ec ¼

ffiffiffiffiffiffiffiffiffi
l=�

p
is specific to this particular creas- 

ing to cratering problem we consider here. For example, in a recent 
work, Wang et al. [62] showed that for bursting drops in a solid, the 
critical electric field appeared to follow the relationship 
~Ec ¼ 0:6

ffiffiffiffiffiffiffiffiffi
l=�

p
.

We modeled the experime ntal configuration of Wang et al. [2]
by consideri ng inhomogeneous deformation in a quasi-3D strip.
The configuration is termed quasi-3D as all z-displacement s are 
set to be zero to mimic a plane strain problem. To study this,
we created a 3D strip with geometry 100 � 4� 1, which was dis- 
cretized with 8-node hexahedral elements and 27-node hexahe- 
dral elements. For the 8-node hexahedral elements, mesh 
spacings of 1.0, 0.5, 0.25 and 0.125 were utilized to study conver- 
gence of the Q1P0 results for the critical electric field and the 
crease spacing. These mesh spacings resulted in 400, 1600, 6400 
and 25,600 elements, respectively, and 1010, 3618, 13634 and 
52,866 nodes, respectively . A study comparing the Q1P0, Hex8 
and Hex27 elements was performed for the same mesh spacing 
of 1.0.

The enforced boundary conditions on the quasi-3D DE strip 
were as follows. The �y surface of the DE was constrained in all 
three directions, while the þx and �x surfaces were also con- 
strained in the x-directio n to keep the length of the strip fixed.
Electrostatic loading is applied using a monotonica lly increasing 
voltage on the þy surface, which mimics the electrostatic loading 
condition in the experiments of Wang et al. [2]. Neglecting the re- 
gions around the edges of the electrodes, the deformation of the DE
strip was homogeneous until electromechan ical instability 
occurred . A problem schematic of the FEM model showing all 
mechanical and electrical boundary condition s is given in Fig. (2).

We first show in Fig. (3) the evolution of the electromechan ical 
instabilit y as captured using the proposed Q1P0 FEM formulation ,
where the contours are of the displacement magnitude. Fig. (3a)
shows the initial, random surface roughening that occurs once 
the critical electric field is reached. As the voltage is increased,
Fig. (3b) shows the initial creases that form at the surface of the 
DE film. While the entire film is not shown, the surface creases 
form spontaneou sly all along the film surface from the initial ran- 
dom roughening. As the voltage is increased further, the initial sur- 
face creases evolve into craters as shown in Fig. (3c). The craters 
that form in the film can be quite deep; as shown in Fig. (3c), the 
magnitud e of the mechanical displacemen t (_D_VEC) has a maxi- 
mum value of about 3.5, the majority of which occurs in the verti- 
cal (thickness) direction of the film. Given that the film thickness is
4.0, it is clear that the deformation of the crease reaches a signifi-
cant fraction of the film thickness, which eventually causes 



Fig. 3. Evolution of electromechanical instability on dielectric polymer surface from (a) initial surface roughening to (b) initiation of crease formation to (c) cratering using 
proposed Q1P0 FEM formulation. _D_VEC in the legend refers to the magnitude of the mechanical displacement. Note that the thickness of the film is 4.0.
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numerical instability and failure of the simulation caused by non- 
convergence resulting from the extremely large material 
deformation .

We show a global comparison of the Q1P0, Hex8 and Hex27 re- 
sults in Fig. (4). There are several noteworthy differences in the re- 
sults. First, both the Hex27 and Q1P0 results in Figs. (4b) and (4c),
respectively , indicate that both capture the initial surface creasing 
to cratering transition. In contrast, the cratering transition is not 
observed for the Hex8 element in Fig. (4a). Instead, upon formatio n
of the initial surface creases, the creases are observed to propagat e
along the surface in response to the increasing voltage.

Because the creasing to cratering transition is not observed for 
the Hex8 element, we focus on the Q1P0 and Hex27 elements to
compare the calculated distance (wavelength) between craters to
the experimentally observed value of 1.5 times the film thickness.
As seen in Fig. (4), for both the Hex27 and Q1P0 results that there is
a distribut ion of distances (wavelengths) separating each crater.
For the Hex27 result in Fig. (4b), total of 15 craters were identified,
with the crater spacing ranging between 0.75 and 2.5 times the 
film thickness, with an average crater separation (wavelength) of
about 1.48 times the film thickness. For the Q1P0 result in
Fig. (4c), total of 19 craters were identified, with the crater spacing 
ranging between 0.94 and 1.88 times the film thickness, with an
average crater separation (wavelength) of about 1.31 times the 
film thickness. Both the Q1P0 and Hex27 results for the crater sep- 
aration show some difference as compare d to the experimentally 
observed result of 1.0 times the film thickness, with the Q1P0 
being more accurate. There are at least three possible reasons for 
this, with regards to the Q1P0 results. First, one possibility is that 
the length L ¼ 100 of the quasi-3D strip is not large enough to re- 
move any boundary effects; specifically, the length to thickness ra- 
tio in the FEM simulatio ns is 25, whereas the experime ntal length 
to thickness ratio is larger than 1000. Second, as seen later in
Fig. (6), for the finest mesh density we used of 0.125, the error in
the critical electric field is still 10% as compared to the theoretical 
result. This suggests that a refinement in the mesh density may 
also lead to more accurate results in the crease spacing. Finally,
the FEM model assumes an ideal dielectric law, which may be dif- 
ferent from the polymer used in the experiments .

We next compare the performanc e of all elements in predicting 
the critical electric field to induce the surface creasing, i.e. the elec- 
tromechani cal instabilit y. In looking at Fig. (5), it can be seen that 
in plotting the normalized voltage U versus the normalized charge 
Q that for all cases, there is an initial regime in which the voltage- 
charge curve is linear. However, there is eventually a sharp de- 
crease in the slope, which indicates the onset of electromechan ical 
instabilit y. The electric field corresponding to this point is the one 
we use as the critical electric field ~Ec . We compare the performanc e



Fig. 4. Comparison of (a) Hex8, (b) Hex27, and (c) Q1P0 elements, all with mesh spacing of 1.0, for a representative configuration close to simulation failure. _D_VEC refers to
the magnitude of the mechanical displacement. Note that the film thickness in all cases is 4.0.

Fig. 5. Comparison of Q1P0, Hex8 and Hex27 elements for 3D plane strain strip, all 
with mesh spacing of 1.0. H ¼ 4 is the height of the film, Q is the charge at the top 
surface of the film, L ¼ 100 is the length of the film, t ¼ 1 is the thickness of the film,
� ¼ 1:0 is the dielectric constant, U is the voltage, and l ¼ 1 is the shear modulus.

Fig. 6. Convergence of the normalized critical voltage U for electromechanical 
instability for the proposed Q1P0 element with increasing mesh density. H ¼ 4 is
the height of the film, Q is the charge at the top surface of the film, L ¼ 100 is the 
length of the film, t ¼ 1 is the thickness of the film, � ¼ 1:0 is the dielectric constant,
U is the voltage, and l ¼ 1 is the shear modulus.
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of the Q1P0 formulation against the linear Hex8 and quadratic 
Hex27 elements for the same mesh size of 1.0, which is shown in
Fig. (5). There, it is clear that the Hex8 element does not predict 
the electromechan ical instabilit y for normalized voltages that are 
more than 3.5 times the critical value of 1.0 [2]. In fact, the Hex8 
element does not predict the instability until a normalized voltage 
of 5.2 is reached. The artificially large critical voltage for the Hex8 
element occurs because it is well-known to be susceptible to volu- 
metric locking effects, which means that it responds in an artifi-
cially stiff manner to applied forces, and thus a significantly
larger voltage is needed to produce the electromechan ical 
instabilit y.

In contrast, the Hex27 element performs better; the critical nor- 
malized voltage is about 1.82, which is much lower than the Hex8 
value, but much higher than the critical value of ~Ec ¼ 1:0 from the- 
ory and experiment (l ¼ � ¼ 1 in the FEM simulations). In con- 
trast, the Q1P0 formulation predicts an ~Ec ¼ 1:41, which is
substanti ally lower than the standard linear Hex8 and quadratic 
Hex27 elements but still about 40% higher than the experime ntally 
reported value of 1.0.
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Because the Q1P0 result differs from the observed theoretical 
and experimental value for the critical voltage for a coarse FEM 
mesh, we study the converge nce of the proposed Q1P0 formulation 
towards the experimental result with increasing FEM mesh den- 
sity. We show this result in Fig. (6), where the normalized volt- 
age-charge curves are shown for three different mesh densities of
the Q1P0 formulat ion. As previously discussed in Fig. (5), for the 
coarsest element spacing of 1.0, ~Ec � 1:41. However, for the finer
element spacings of 0.5, 0.25 and 0.125, ~Ec � 1:27, 1.18 and 1.10,
respectively , which demonstrates that the Q1P0 formulation con- 
verges towards the analytic solution of ~Ec ¼ 1:0 with increasing 
mesh density. We also note that the mesh size of 0.125 constitutes 
an effective upper bound on mesh density as the simulatio n with 
this mesh size required nearly one month to complete. It should 
also be emphasized from a computational efficiency viewpoint that 
mesh refinement is considerably easier and less expensive using 
standard linear 8-node hexahedral elements than using the qua- 
dratic 27-node elements .

These results clearly demonstrat e that if volumetr ic locking ef- 
fects are not eliminated in the FEM modeling of DEs, artificially
high predictions for critical applied voltages will result due to
the fact that the deformat ion of standard FEs is artificially low 
for incompressible media.

6. Conclusion s

We have presented a finite element formulation for dielectric 
elastomers that significantly alleviates the issue of volumetric 
locking. The formulat ion is novel in that it extends the seminal 
Q1P0 work of Simo et al. [1] to the coupled electromechan ical do- 
main. Numerical results were presented that demonstrat e the abil- 
ity of the proposed electromechan ical Q1P0 formulation to
capture, as compared to the experimental work of Wang et al.
[2], both the critical electric field that is needed to cause creasing 
instabilities in constrained dielectric elastomer films, as well as
the spacing between the creases.

Acknowledgeme nts 

HSP acknowled ges support from the Mechanical Engineering 
Department at Boston University, and NSF grant CMMI-1036 460.
X.Z. and Q. W. acknowledge support from the NSF (CMMI-
1253495, CMMI-120051 5, and DMR-1121107).

References

[1] J.C. Simo, R.L. Taylor, K.S. Pister, Variational and projection methods for the 
volume constraint in finite deformation elasto-plasticity, Comput. Methods 
Appl. Mech. Engrg. 51 (1985) 177–208.

[2] Q. Wang, L. Zhang, X. Zhao, Creasing to cratering instability in polymers under 
ultrahigh electric fields, Phys. Rev. Lett. 106 (2011) 118301 .

[3] F. Carpi, S. Bauer, D.D. Rossi, Stretching dielectric elastomer performance,
Science 330 (2010) 1759–1761.

[4] P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial
muscles, Macromol. Rapid Commun. 31 (2010) 10–36.

[5] E. Biddiss, T. Chau, Dielectric elastomers as actuators for upper limb 
prosthetics: challenges and opportunities, Med. Engrg. Phys. 30 (2008) 403–
418.

[6] Y. Bar-Cohen, Biomimetics: mimicking and inspired-by biology, Proc. SPIE 
5759 (2005) 1–8.

[7] T. Mirfakhrai, J.D.W. Madden, R.H. Baughman, Polymer artificial muscles,
Mater. Today 10 (2007) 30–38.

[8] A. O’Halloran, F. O’Malley, P. McHugh, A review on dielectric elastomer 
actuators, technology, applications, and challenges, J. Appl. Phys. 104 (2008)
071101.

[9] X. Zhang, C.L.M. Wissler, B. Jaehne, G. Kovacs, Dielectric elastomers in actuator 
technology, Adv. Engrg. Mater. 7 (2005) 361–367.

[10] R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics 
with compliant electrodes as a means of actuation, Sens. Actuators A 64 (1998)
77–85.
[11] Q. Wang, M. Tahir, J. Zang, X. Zhao, Dynamic electrostatic lithography:
multiscale on-demand patterning on large-area curved substrates, Adv. Mater.
24 (2012) 1947–1951.

[12] P. Shivapooja, Q. Wang, B. Orihuela, D. Rittschof, G.P. Lopez, X. Zhao,
Bioinspired surfaces with dynamic topography for active control of
biofouling, Adv. Mater. 25 (2013) 1430–1434.

[13] R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated 
elastomers with strain greater than 100%, Science 287 (2000) 836–839.

[14] J.W. Fox, N.C. Goulbourne, On the dynamic electromechanical loading of
dielectric elastomer membranes, J. Mech. Phys. Solids 56 (2008) 2669–2686.

[15] C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Rontgen’s electrode-free 
elastomer actuators without electromechanical pull-in instability, Proc. Natl.
Acad. Sci. 107 (2010) 4505–4510.

[16] G. Kofod, P. Sommer-Larsen, R. Kornbluh, R. Pelrine, Actuation response of
polyacrylate dielectric elastomers, J. Intel. Mater. Syst. Struct. 14 (2003) 787–
793.

[17] G. Kofod, P. Sommer-Larsen, Silicone dielectric elastomer actuators: finite-
elasticity model of actuation, Sens. Actuators A 122 (2005) 273–283.

[18] Q. Pei, R. Pelrine, M. Rosenthal, S. Stanford, H. Prahlad, R. Kornbluh, Recent 
progress on electroelastomer artificial muscles and their application for 
biomimetic robots, Proc. SPIE 5385 (2004) 41–50.

[19] J.-S. Plante, S. Dubowsky, Large-scale failure modes of dielectric elastomer 
actuators, Int. J. Solids Struct. 43 (2006) 7727–7751.

[20] J.-S. Plante, S. Dubowsky, On the performance mechanisms of dielectric 
elastomer actuators, Sens. Actuators A 137 (2007) 96–109.

[21] J.-S. Plante, S. Dubowsky, On the properties of dielectric elastomer actuators 
and their design implications, Smart Mater. Struct. 16 (2007) S227–S236.

[22] H.F. Schlaak, M. Jungmann, M. Matysek, P. Lotz, Novel multilayer electrostatic 
solid-state actuators with elastic dielectric, Proc. SPIE 5759 (2005) 121–133.

[23] M. Wissler, E. Mazza, Mechanical behavior of an acrylic elastomer used in
dielectric elastomer actuators, Sens. Actuators A 134 (2007) 494–504.

[24] X.Q. Zhang, M. Wissler, B. Jaehne, R. Broennimann, G. Kovacs, Effects of
crosslinking, prestrain and dielectric filler on the electromechanical response 
of a new silicone and comparison with acrylic elastomer, Proc. SPIE 5385 
(2004) 78–86.

[25] S. Chiba, M. Waki, R. Kornbluh, R. Pelrine, Innovative power generators for 
energy harvesting using electroactive polymer artificial muscles, Proc. SPIE 
6927 (2008) 692715 .

[26] Z. Suo, X. Zhao, W.H. Greene, A nonlinear field theory of deformable dielectrics,
J. Mech. Phys. Solids 56 (2008) 467–486.

[27] Z. Suo, Theory of dielectric elastomers, Acta Mech. Solida Sinica 23 (2010)
549–578.

[28] N.C. Goulbourne, E.M. Mockensturm, M.I. Frecker, A nonlinear model for 
dielectric elastomer membranes, J. Appl. Mech. 72 (2005) 899–906.

[29] A. Dorfmann, R.W. Ogden, Nonlinear electroelasticity, Acta Mech. 82 (2005)
99–127.

[30] A. Dorfmann, R.W. Ogden, Nonlinear electroelastic deformations, J. Elast. 174 
(2006) 167–183.

[31] R.M. McMeeking, C.M. Landis, Electrostatic forces and stored energy for 
deformable dielectric materials, J. Appl. Mech. 72 (2005) 581–590.

[32] L. Patrick, K. Gabor, M. Silvain, Characterization of dielectric elastomer 
actuators based on a hyperelastic film model, Sens. Actuators A 135 (2007)
748–757.

[33] M. Wissler, E. Mazza, Modeling and simulation of dielectric elastomer 
actuators, Smart Mater. Struct. 14 (2005) 1396–1402.

[34] G.A. Maugin, Continuum mechanics of electromagnetic solids , North-Holland,
Amsterdam, 1988 .

[35] K. Bertoldi, M. Gei, Instabilities in multilayered soft dielectrics, J. Mech. Phys.
Solids 59 (2011) 18–42.

[36] W. Hong, Modeling viscoelastic dielectrics, J. Mech. Phys. Solids 59 (2011)
637–650.

[37] A. Dorfmann, R.W. Ogden, Nonlinear electroelastostatics: incremental 
equations and stability, Int. J. Engrg. Sci. 48 (2010) 1–14.

[38] X. Zhao, W. Hong, Z. Suo, Electromechanical hysteresis and coexistent states in
dielectric elastomers, Phys. Rev. B 76 (2007) 134113 .

[39] M. Ottenio, M. Destrade, R.W. Ogden, Incremental magnetoelastic 
deformations, with application to surface instability, J. Elast. 90 (2008) 19–42.

[40] Q. Wang, M. Tahir, L. Zhang, X. Zhao, Electro-creasing instability in deformed 
polymers: experiment and theory, Soft Matter 7 (2011) 6583–6589.

[41] X. Zhao, Z. Suo, Method to analyze programmable deformation of dielectric 
elastomers, Appl. Phys. Lett. 93 (2008) 251902 .

[42] D.K. Vu, P. Steinmann, G. Possart, Numerical modelling of non-linear 
electroelasticity, Int. J. Numer. Methods Engrg. 70 (2007) 685–704.

[43] J. Zhou, W. Hong, X. Zhao, Z. Zhang, Z. Suo, Propagation of instability in
dielectric elastomers, Int. J. Solids Struct. 45 (2008) 3739–3750.

[44] B. O’Brien, T. McKay, E. Calius, S. Xie, I. Anderson, Finite element modelling of
dielectric elastomer minimum energy structures, Appl. Phys. A - Mater. Sci.
Process. 94 (2009) 507–514.

[45] M. Wissler, E. Mazza, Electromechanical coupling in dielectric elastomer 
actuators, Sens. Actuators A 138 (2007) 384–393.

[46] H.S. Park, T.D. Nguyen, Viscoelastic effects on electromechanical instabilities in
dielectric elastomers, Soft Matter 9 (2013) 1031–1042.

[47] K.A. Khan, H. Wafai, T.E. Sayed, A variational constitutive framework for the 
nonlinear viscoelastic response of a dielectric elastomer, Comput. Mech.
(2012), http://dx.doi.org/10.1007/s00466-012-0815-6.

http://refhub.elsevier.com/S0045-7825(13)00079-0/h0005
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0005
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0005
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0010
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0010
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0015
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0015
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0020
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0020
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0025
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0025
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0025
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0030
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0030
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0035
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0035
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0040
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0040
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0040
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0045
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0045
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0050
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0050
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0050
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0055
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0055
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0055
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0060
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0060
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0060
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0065
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0065
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0070
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0070
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0075
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0075
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0075
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0080
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0080
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0080
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0085
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0085
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0090
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0090
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0090
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0095
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0095
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0100
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0100
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0105
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0105
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0110
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0110
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0115
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0115
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0120
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0120
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0120
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0120
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0125
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0125
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0125
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0130
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0130
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0135
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0135
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0140
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0140
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0145
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0145
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0150
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0150
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0155
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0155
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0160
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0160
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0160
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0165
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0165
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0170
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0170
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0170
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0175
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0175
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0180
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0180
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0185
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0185
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0190
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0190
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0195
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0195
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0200
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0200
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0205
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0205
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0210
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0210
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0215
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0215
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0220
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0220
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0220
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0225
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0225
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0230
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0230
http://dx.doi.org/10.1007/s00466-012-0815-6


H.S. Park et al. / Comput. Methods Appl. Mech. Engrg. 260 (2013) 40–49 49
[48] M. Wissler, E. Mazza, Modeling of a pre-strained circular actuator made of
dielectric elastomers, Sens. Actuators A 120 (2005) 184–192.

[49] S. Skatulla, C. Sansour, A. Arockiarajann, A multiplicative approach for 
nonlinear elasto-elasticity, Comput. Methods Appl. Mech. Engrg. 245-246 
(2012) 245–253.

[50] H.S. Park, Z. Suo, J. Zhou, P.A. Klein, A dynamic finite element method for 
inhomogeneous deformation and electromechanical instability of dielectric 
elastomer transducers, Int. J. Solids Struct. 49 (2012) 2187–2194.

[51] Z.P. Bazant, T.B. Belytschko, Wave propagation in a strain-softening bar: exact 
solution, J. Engrg. Mech. 111 (1985) 381–385.

[52] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and 
Structures, John Wiley and Sons, 2002 .

[53] E. Schaffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Electrically induced 
structure formation and pattern transfer, Nature 403 (2000) 874–877.

[54] X. Zhao, Z. Suo, Method to analyze electromechanical instability of dielectric 
elastomers, Appl. Phys. Lett. 91 (2007) 061921 .

[55] J. Huang, T. Li, C.C. Foo, J. Zhu, D.R. Clarke, Z. Suo, Giant, voltage-actuated 
deformation of a dielectric elastomer under dead load, Appl. Phys. Lett. 100 
(2012) 041911 .
[56] C.C. Foo, S. Cai, S.J.A. Koh, S. Bauer, Z. Suo, Model of dissipative dielectric 
elastomers, J. Appl. Phys. 111 (2012) 034102 .

[57] E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large 
stretch behavior of rubber elastic materials, J. Mech. Phys. Solids 41 (1993)
389–412.

[58] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite 
Element Analysis , Prentice-Hall, 1987 .

[59] G.A. Holzapfel, Structural and numerical models for the Viscoelastic response 
of arterial walls with residual stresses, Springer, pp. 109–184.

[60] C. Miehe, Numerical computation of algorithmic (consistent) tangent moduli 
in large-strain computational inelasticity, Comput. Methods Appl. Mech.
Engrg. 134 (1996) 223–240.

[61] Tahoe, 2011. <http://sourceforge.net/projects/tahoe/>.
[62] Q. Wang, Z. Suo, X. Zhao, Bursting drops in solid dielectrics caused by high 

voltages, Nat. Commun. 3 (2012) 1157 .

http://refhub.elsevier.com/S0045-7825(13)00079-0/h0240
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0240
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0245
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0245
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0245
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0250
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0250
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0250
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0255
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0255
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0260
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0260
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0260
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0265
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0265
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0270
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0270
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0275
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0275
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0275
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0280
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0280
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0285
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0285
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0285
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0290
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0290
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0290
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0295
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0295
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0295
http://sourceforge.net/projects/tahoe/
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0300
http://refhub.elsevier.com/S0045-7825(13)00079-0/h0300

	Electromechanical instability on dielectric polymer surface: Modeling and experiment
	1 Introduction
	2 Background: nonlinear electromechanical field theory
	2.1 Constitutive model of an ideal dielectric elastomer

	3 Finite element discretization
	4 Q1P0 Formulation
	4.1 Multiplicative split and constitutive equations
	4.2 Three-field Lagrangian and FEM equations
	4.3 Q1P0 for electromechanical coupling

	5 Numerical and Experimental Results
	6 Conclusions
	Acknowledgements
	References


