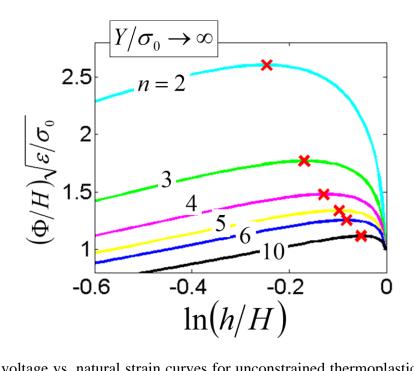
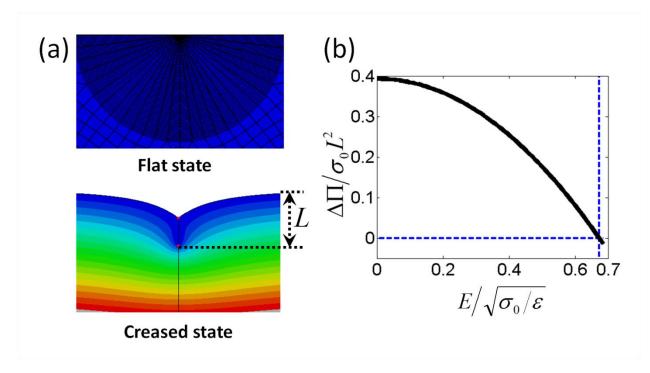
## Supplementary information for

## Electromechanical Instabilities of Thermoplastics: Theory and In Situ Observation


Qiming Wang<sup>1</sup>, Xiaofan Niu<sup>2</sup>, Qibing Pei<sup>2</sup>, Michael Dickey<sup>3</sup>, Xuanhe Zhao<sup>1\*</sup>

<sup>1</sup> Soft Active Materials Laboratory, Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.


<sup>2</sup> Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.

3 Department of Chemical and Bimolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.

\* E-mail: xz69@duke.edu



**Fig. S1.** The voltage vs. natural strain curves for unconstrained thermoplastics predicted by the theoretical model. The *pull-in* instability is indicated by crosses.



**Fig. S2.** (a) Equipotential contours in the thermoplastic at the flat and creased states. (b) The potential-energy difference between the flat and creased states as a function of the applied electric field.

|                     | РТВА    | Polystyrene | Parafilm | Polymethl<br>Methacrylate |
|---------------------|---------|-------------|----------|---------------------------|
| T <sub>g</sub> (°C) | 70      | 100         | ~50      | 105                       |
| $T_m(^{\circ}C)$    | 190-200 | 240         | ~80      | 165                       |

**Table I.** Glass transition temperature  $(T_g)$  and melting temperature  $(T_m)$  of various thermoplastics.

|       | Y (kPa) | $\sigma_{_0}$ (kPa) | n    |
|-------|---------|---------------------|------|
| 70°C  | 404     | 14.9                | 2.04 |
| 80°C  | 324     | 12.3                | 2.74 |
| 90°C  | 242     | 9.80                | 2.89 |
| 100°C | 156     | 7.43                | 2.96 |
| 120°C | 59.5    | 5.23                | 4.43 |
| 150°C | 25.1    | 2.29                | 5.79 |

**Table II**. Mechanical parameters of PTBA at various temperatures by fitting experimental data in Fig. 3(a) to the Ramberg-Osgood model.

**Video S1**: *In situ* observation of the *creasing-cratering* instability in PTBA at 100  $^{\circ}$ C subject to a DC voltage with a ramping rate of 0.1kVs<sup>-1</sup>.