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Complex dielectric constants of binary-phase random composites are simulated for a
three-dimensional structure consisting of cubic grains using the Monte Carlo-finite element method.
Numerical results are fitted using Maxwell–Garnett, Bruggeman symmetrical, and general effective
media formulas, and the fitting efficiencies of the formulas are quantitatively evaluated. The general
effective media formula gives the best fitting to our simulation results and its accuracy is better than
3.7%. The effects of frequencies on the spatial distribution of electrostatic potentials in dielectric
composites are discussed. The distribution of potential contours drawn in the low-frequency region
and the high-frequency region show great variation, because of different lengths of time for charge
to accumulate near the interphase boundaries. Dielectric spectra are drawn by varying volume
fraction and lossy property of one phase in binary-phase composites. General properties of the
dielectric spectra are discussed and the characteristics of the dielectric spectra caused by the
differences in the lossy properties of the two phases at certain volume fractions are analyzed.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1712017#

I. INTRODUCTION

Composite materials have been extensively used in elec-
trical applications. The fact that they are often made up of at
least two constituents or phases enables us to tailor materials
for special purposes. The electrical properties of a composite
system are determined by the properties of the constituents,
interaction between them, and geometrical configuration. In
designing composite materials with specified properties for
electrical applications, one should take these parameters into
consideration. Typical experimental design methods are char-
acterized by a classical ‘‘trial and error’’ approach.1 The
modeling and simulations of desired properties of composite
systems can offer quick predictions and provide valuable ad-
vice for material designers, especially when high perfor-
mance computers have become accessible.

The modeling of dielectric properties of insulation sys-
tems has received considerable fundamental attention in re-
cent years. For example, Sereniet al.2 have published a se-
ries of articles on the modeling of complex effective
permittivity by finite element method~FEM! and boundary
integral equation method, simulating both dielectric con-
stants and losses for a periodic binary-phase composite
material.2 However, for composites with a random structure,
they only calculated the dielectric constants without losses.2

Krakovaky and Myroshnychenko3 and Tuncer4 simulated
both dielectric constants and losses of random binary-phase
composite materials using two-dimensional~2D! models.
Ang et al. calculated the dielectric constants and losses of
binary-phase composites that consisted of phasea with dif-
ferent shapes~circles and triangles! distributed in a matrix
phaseb.5 Their models were also two-dimensional.5 Tuncer

et al.1 gave an excellent review of the property and modeling
of dielectric mixtures, finding that three-dimensional~3D!
structural simulations still need development. In this article,
we simulate the complex dielectric properties of lossy com-
posites with a 3D structure using a Monto Carlo-finite ele-
ment method~MC-FEM!.

This article is organized as follows. In Sec. II, we pro-
pose our numerical model and the basic theories underlying
it. In Sec. III, a brief summary of the dielectric mixture for-
mulas used for the comparison with the numerical results
follows. In Sec. IV, the MC-FEM results are compared with
the predictions of mixture formulas, and also analyzed in
other approaches. Section V contains concluding remarks of
this work.

II. MODELING

A. Basic theory

In dielectric matter, the relation between dielectric dis-
placementD̄ and applied electric fieldĒ is often linear and
can be expressed as the following equation:

D̄5e0eĒ, ~1!

where the relative permittivitye describes the dielectric
properties of the matter and constante051/36p(nF/m) is
the permittivity of free space.

According to Maxwell equations,D̄ obeys

¹3D̄5r, ~2!

wherer is the volumetric charge density.
The continuity equation is

¹3 J̄52]r/]t, ~3!a!Electronic mail: wuyugong@yahoo.com.cn
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whereJ̄ is current density.
Substituting Eq.~2! into Eq. ~3! gives

¹S J̄1
]D̄

]t D 50. ~4!

Using Eqs.~1! and ~4!, and Ohm’s Law

J̄5sĒ ~5!

we have

¹S sĒ1
]

]t
e0eĒD50, ~6!

wheres is conductivity of the material.
In the case of sinusoidalĒ of angular frequencyv, Eq.

~6! becomes

¹~s1 ive0e!Ē50. ~7!

When the dielectric losses are assumed to be purely ohmic,
i.e.,

e95
s

e0v
~8!

and e in Eq. ~7! is written into the form ofe8, Eq. ~7! be-
comes

¹~e82 i e9!vĒ50. ~9!

When e8 and s are assumed to be frequency independent,
Eq. ~9! becomes

¹3eĒ50, ~10!

wheree5e82e9i is called complex relative dielectric con-
stants of that medium.

When the dielectric material is nonmagnetic~magnetic
permeabilitym51! andv is low enough to neglect the inter-
action between the magnetic and electric fields, the gradient
of electric scalar potential is

¹F52Ē. ~11!

Substituting Eq.~11! into Eq. ~10! gives

¹3e¹F50 ~12!

the resolution of which under specific boundary conditions
forms the basis of our numerical model.

B. Numerical model

Our simulation of the effective complex dielectric con-
stants of binary-phase composites is performed on the model
as shown in Fig. 1. A parallel plate capacitor, with conduct-
ing planes of areasS and separationh is filled with a statis-
tically isotropic composite dielectric, consisting of two iso-
tropic lossy materials with complex dielectric constantsea

andeb ~or with real dielectric constantsea8 andeb8 , and con-
ductivity sa and sb). A harmonically oscillating potential
differenceU5U0 exp(ivt) is applied on this capacitor with
an angular frequencyv. The two phases in this composite
are composed of cubic grains, designated as phasea or phase
b by standard Monte Carlo method using random number
generator, bounded by the volume fraction of each phase.

Therefore, the two phases in this composite have similar
morphologies and are distributed randomly through the
whole system.

The problem we face is to solve Eq.~12! in conjunction
with boundary conditions

F5U0 exp~ ivt ! on the top plane, ~13!

F50 on the bottom plane, ~14!

and continuity conditions on the interface boundaries of the
two phases

Fa5Fb , ~15!

ean̄3¹Fa5ebn̄3¹Fb , ~16!

wheren̄ is the unit vector normal to the interface.
The elimination of fringing effects

n̄3¹F50 on the side planes ~17!

also has to be satisfied. Heren̄ is normal to the side surface
considered.

Using FEM, we split the composite model shown in Fig.
1 into Ne finite elements by means ofN nodes. The largest
node number in this paper is about 360 000. The potential
distribution in this space can be approximated inside each
element using interpolation functions.6 By solving the matrix
equations resulting from this discretization procedure, we
obtain the potential and its normal derivation on each node
of the mesh.

Based on this potential distribution, we compute both the
electrostatic stored energy and dielectric loss on each ele-
ment of the mesh. The energy stored in the capacitor as
shown in Fig. 1 can be evaluated as2

We5
1

2
e0e8

S

h
U0

2, ~18!

and energy loss as2

FIG. 1. A parallel plate capacitor filled with a dielectric composite consist-
ing of two phases:a ~gray cubic grain! andb ~white cubic grain!. The finite
element lattice in this illustration is 10310310.
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r5
1

2
e0e9

S

h
vU0

2. ~19!

Thus, the real and imaginary parts of the effective complex
dielectric constants of this system can be obtained.

More details of FEM applications to electrical composite
systems can be found in Refs. 1–6.

III. DIELECTRIC MIXING RULES

For composite materials, one of the challenging prob-
lems of both theoretical and practical importance has been
the prediction and computation of the effective electrical
properties. A variety of mixture formulas have been proposed
based on different theories.7–14 Bergman and Stroud gave an
excellent review of the physical properties of composite me-
dia for this problem.15

Effective medium theory considers the dielectric or elec-
tric response of a heterogeneous system by assuming that
each particle or unit is, on average, surrounded by a mixture,
which has the assumed homogenous media.7

Maxwell–Garnett formula can be expressed by8

em5eb

ebVb~12K !1ea~Va1KVb!

eb1KVb~ea2eb!
. ~20!

Here ea5ea82ea9i and eb5eb82eb9i are the complex dielec-
tric constants of phasea and phaseb, Va , and Vb are the
volume fractions (Va1Vb51), andem5em8 2em9 i is the ef-
fective complex dielectric constant of the composite. The
depolarization factor of the particles of phasea in the direc-
tion perpendicular to the capacitor plates isK. Maxwell–
Garnett formula is generally valid for composites composed
of a small volume fraction of particles~phasea! randomly
dispersed into a host matrix~phaseb!. Bruggeman symmetri-
cal formula for the dielectric constants of binary-phase com-
posite materials can be written as9,10

Va~ea2em!

ea1Aem
1

Vb~eb2em!

eb1Aem
50. ~21!

The nonfixed parameter A can be expressed as

A5
12fc

fc
. ~22!

Herefc is the critical volume fraction of phasea. Because
the Bruggeman symmetrical formula treats both phases on a
completely symmetrical basis, it is expected to be more ap-
plicable to the media where both phases have similar mor-
phologies and are randomly distributed through the whole
system.

Both the Maxwell–Garnett and Bruggeman symmetrical
formulas are based on effective media theory. It is worth
noting that effective media theory is insensitive to the de-
tailed structures of composite materials, for example, the
connectedness and clustering of one phase in a binary-phase
random composite.11

Percolation theory describes a phenomenological power-
law dependence for the conductivity of a mixture near the
conductor-insulator transition.12,13Strictly speaking, percola-
tion theory is valid only when the ratio of the conductivity or

resistivity of the two phases in a binary-phase composite
approaches infinity. This limits the application of percolation
theory to many real heterogeneous systems, particularly di-
electric systems.

Combining percolation considerations into effective me-
dium theory, McLachlan proposed a general effective me-
dium ~GEM! formula14

Va~ea
1/t2em

1/t!

ea
1/t1Aem

1/t
1

Vb~eb
1/t2em

1/t!

eb
1/t1Aem

1/t
50. ~23!

The GEM formula has two nonfixed parametersA and t to
characterize the microstructure or distribution and intercon-
nectivity of the components in composite materials. HereA
is also related tofc by Eq. ~22!. The GEM formula reduces
to the Bruggeman symmetrical formula whent51 and has
the mathematical form of the percolation model in certain
limits.

IV. RESULTS AND DISCUSSION

A. Accuracy of the algorithm

The effective complex dielectric constants of a serial
mixing system can be calculated precisely by Lichtenecker’s
serial mixing rule16

1

em
5

Va

ea
1

Vb

eb
. ~24!

We have performed FEM calculations on serial mixing sys-
tem with ea56 – 5i andeb54 – 3i , using the algorithm de-
scribed in Sec. II without Monte Carlo method. Through
comparison, we find that the deviations of both real and
imaginary parts of the effective complex dielectric constants
simulated by FEM from the theoretical ones are less than 1
310212. This demonstrates the accuracy of our algorithm
for computing the complex dielectric constants of three-
dimensional lossy composites.

B. Numerical results fitted by the formulas

Using the model described in Sec. II, we simulated the
effective complex dielectric constants of four binary-phase

FIG. 2. The effective complex dielectric constants simulated by MC-FEM
~d! and the deviations of the predictions of Maxwell–Garnett~,!, Brugge-
man symmetrical~n!, and GEM~s! formulas from MC-FEM values for
ea55 – 8i andeb51 – 3i .
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composite systems: ea55 – 8ieb51 – 3i, ea58 – 3ieb

53 – 1i, ea53 – 0.03ieb51 – 0.00i, andea5500eb51. In
each system,Va ranges from 0.05 to 0.95 at equal intervals
of 0.05. For eachVa , we take the average of 200 MC-FEM
calculations as the effective dielectric constantem . This pro-

vides values of the effective permitivities and dielectric
losses, with a coefficient of variation~e.g. standard deviation
divided by average! less than 4%.

The dielectric mixture formulas discussed in Sec. III are
fitted to em’s of each composite system. The quantity

d5A(n$C8@~em8 2eequ8 !/0.01em8 #21C9@~em9 2eequ9 !/0.01em9 #2%

n2p
~25!

is minimized by varying the nonfixed parameters in dielec-
tric mixture formulas,14,17 whereem8 2em9 i 5em is the effec-
tive complex dielectric constant simulated by MC-FEM, and
eequ8 2eequ9 i 5eequ the effective complex dielectric constant
calculated by dielectric mixture formulas,n the number of
data points~heren519), p the number of variable param-
eters in dielectric mixture formulas, andC8 C9 are weighting
factors. Ifd51, the data of this system could be fitted to an
accuracy of 1%. The algorithm for minimizingd is based on
the solution of corresponding Kuhn–Tucker equation
through sequential quadratic method.18 This fitting technique
has been widely used for fitting the predictive formulas to
experimental results of both conductivity14 and dielectric
constants.17

For systems of ea55 – 8ieb51 – 3i, ea58 – 3ieb

53 – 1i, andea53 – 0.03ieb51 – 0.00i,C8 andC9 are cho-
sen to be 0.5 equally. For system ofea5500eb51, C8 is set
equal to 1 withC9 equal to 0, asem9 has a value of zero. In
Figs. 2–5, we show the effective complex dielectric con-
stants simulated by MC-FEM for the four systems. For com-
parison, the deviations of the predictions of Maxwell–
Garnett, Bruggeman symmetrical, and GEM formulas from
MC-FEM values are also plotted in Figs. 2–5. It can be
observed that the deviations of GEM formula’s predictions
from MC-FEM values are very slight. On the other hand,
Maxwell–Garnett and Bruggeman symmetrical formulas
have much greater deviations from MC-FEM values, with

the deviations from Maxwell–Garnett formalism being the
greatest. The origin is due to~1! in each of the four compos-
ite systems, the volume fractions of both phasea and phaseb
are ranging from 0.05 to 0.95, but Maxwell–Garnett formula
is valid when there is only a very small volume fraction of
one component and~2! neither Maxwell–Garnett formula
nor Bruggeman symmetrical formula consider the connect-
edness or clustering of individual phases in composites.11

However, the connectivity property can significantly affect
the effective permitivities and losses of our MC-FEM model
at certain composition range.

To quantitatively check the fitting efficiency of
Maxwell–Garnett, Bruggeman symmetrical, and GEM for-
mulas, we show thed values obtained by fitting them to
MC-FEM results, in Table I. It is obvious that thed values
for GEM formula are much smaller than those for Maxwell–
Garnett and Bruggeman symmetrical formulas. It can be
found that the fitting of the GEM formula to our numerical
results has an accuracy better than 3.7%. In fact, the GEM
formula can also satisfactorily model the dielectric constants
of some composite systems such as PMN-pyrochlore,17 over
its entire composition range. Despite its fitting accuracy,
GEM formula needs two nonfixed parameters~i.e., A and t!
to characterize the microstructure or distribution and inter-
connectivity of the components of composites. Therefore, in
order to calculate the parameters of GEM formula for a com-
posite system, one needsa prior information on that system.

FIG. 3. The effective complex dielectric constants simulated by MC-FEM
~d! and the deviations of the predictions of Maxwell–Garnett~,!, Brugge-
man symmetrical~n!, and GEM~s! formulas from MC-FEM values for
ea58 – 3i andeb53 – i.

FIG. 4. The effective complex dielectric constants simulated by MC-FEM
~d! and the deviations of the predictions of Maxwell–Garnett~,!, Brugge-
man symmetrical~n!, and GEM~s! formulas from MC-FEM values for
ea53 – 0.03i andeb51 – 0.00i.
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C. Potential distribution

When a harmonically oscillating dielectric field is ap-
plied on dielectric composites at low frequencies, one effect
often observed as a result of the difference in dielectric prop-
erties of the components is the accumulation of the charge
carriers near the interphase boundaries. This effect is known
as the interfacial or Maxwell–Wagner–Sillars polarization.
Interfacial polarization can cause the undulation of spatial
distribution of the amplitudes of potentials in composites.
Illustrating this point, a dielectric composite system with 0.2
volume fraction of phasea is chosen. The dielectric con-
stants and ohmic conductivities of phasea and phaseb are
ea855 eb852 and sa5331026 Sm21 sb55310210Sm21,
respectively. A harmonically oscillating potential difference
is applied to this system with an angular frequencyv510
rad s21, resulting in a distribution of the potential amplitudes
in the composite. In Fig. 6, we show the potential contours
on the section planes vertical toX andY axes. It is evident
that potential contours on these sections tends to distribute in

such a manner as to avoid passing through phasea. The
undulation of the distribution of the amplitudes of the poten-
tials is obvious. On the other hand, as the frequency rises to
v5108 rad s21, this undulation becomes smooth and slight
as shown in Fig. 7. In this case, the period of potential os-
cillation is not sufficient enough for the charge to accumulate
near the inter-phase boundaries.

FIG. 5. The effective complex dielectric constants simulated by MC-FEM
~d! and the deviations of the predictions of Maxwell–Garnett~,!, Brugge-
man symmetrical~n!, and GEM~s! formulas from MC-FEM values for
ea5500 andeb51.

FIG. 6. Potential contours on section planes~a! X59 and~b! Y59 at low
frequency~v510 rad s21!. The permittivities and ohmic conductivities of
phasea ~gray cells! and phaseb are ea855 sa51026 Sm21 and eb852 sb

510210 Sm21, respectively. The volume fraction of phasea is 0.2.

TABLE I. The d values and parameters of GEM, Bruggeman symmetrical, and Maxwell–Garnett formulas
fitted to the MC-FEM results.

Composite d Parameter

GEM
Bruggeman
symmetrical

Maxwell–
Garnett GEM

Bruggeman
symmetrical

Maxwell–
Garnett

ea55 – 8i 0.0477 0.3411 1.2797 t51.176 A52.613 K50.176
eb51 – 3i A53.133 (fc50.277)

(fc50.243)
ea58 – 3i 0.0153 0.1817 0.6403 t51.176 A52.572 K50.188
eb53 – 1i A53.108 (fc50.280)

(fc50.244)
ea53 – 0.03i 0.0970 1.2751 4.6968 t51.176 A52.805 K50.183
eb51 – 0.00i A53.133 (fc50.263)

(fc50.242)
ea5500 3.6714 21.1596 71.2710 t51.290 A54.321 K50.023
eb51 A55.601 (fc50.188)

(fc50.151)
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D. Dielectric spectra

In this section, we analyze the dielectric spectra for a
lossy composite system with phasea and phaseb, as shown
in Fig. 1. The volume fraction of phasea (Va) is chosen to
be 0.05, 0.10, 0.15, 0.20, 0.50, and 0.80, respectively. For

each volume fraction, the microstructure of the composite is
fixed. The permittivities and ohmic conductivities of phasea
and phaseb are taken asea855, sa51026 Sm21 and eb8
52, sb51028 Sm21, 10210Sm21, or 10211Sm21, respec-
tively. At each Va , three dielectric spectra are drawn for
different sb’s. These dielectric spectra are shown in Figs.
8–13, respectively.

It can be observed that all the plots ofem8 versus log~v!
have a similar shape, characterized by a flat-sharp-flat de-
crease ofem8 @Figs. 8~a!–13~a!#. In the low-frequency region,
lower sb results in the greaterem8 , at constantVa . For Va

50.15 @Fig. 10~a!#, the difference betweenem8 values for
sb51028 Sm21 and 10211Sm21 is the greatest. The plots of
em8 versus log~v! show little frequency dependence in the
high-frequency region, andem8 ’s for different sb values
nearly have no difference.

FIG. 8. Dielectric spectra of the composite atVa50.05 calculated by MC-
FEM for ea855, sa51026 Sm21 and eb852, sb51028 Sm21 ~dot-dashed
line!, 10210 Sm21 ~dotted line!, or 10211 Sm21 ~solid line!, respectively.

FIG. 9. Dielectric spectra of the composite atVa50.10 calculated by MC-
FEM for ea855, sa51026 Sm21 and eb852, sb51028 Sm21 ~dot-dashed
line!, 10210 Sm21 ~dotted line!, or 10211 Sm21 ~solid line!, respectively.

FIG. 10. Dielectric spectra of the composite atVa50.15 calculated by MC-
FEM for ea855, sa51026 Sm21 and eb852, sb51028 Sm21 ~dot-dashed
line!, 10210 Sm21 ~dotted line!, or 10211 Sm21 ~solid line!, respectively.

FIG. 7. Potential contours on section planes~a! X59 and~b! Y59 at high
frequency (v5108 rad s21). The permittivities and ohmic conductivities of
phasea ~gray cells! and phaseb are ea855, sa51026 Sm21 and eb852,
sb510210 Sm21, respectively. The volume fraction of phasea is 0.2.
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The plots of log(em9 ) versus log~v! display subtle differ-
ences in the low-frequency region. In Fig. 8~b! (Va50.05),
whensb510211Sm21, an obvious peak can be observed on
the curve of log(em9 ) versus log~v!; when sb51028 Sm21,
however, the peak disappears; and the plot of log(em9 ) versus
log~v! for sb510210Sm21 can be regarded as a transition
stage in this evolution. In Fig. 9~b! (Va50.10), similar
peaks and evolution processes can also be observed. How-
ever asVa increases, these differences becomes less notice-
able. WhenVa>0.15 @Figs. 10~b!–13~b!#, the features be-
come insignificant for the log(em9 ) versus log~v! plots. When
Va>0.5 @Figs. 12~b!–13~b!#, the plots of log(em9 ) versus
log~v! for different sb values become undistinguishable. In
the high-frequency region, log(em9 ) values all decrease lin-
early with the increase of log~v! @Figs. 8~b!–13~b!#. It is

interesting to note that the slope of all these lines is a con-
stant21.0 demonstrating thatem9 is inverse proportional tov
in the high-frequency region.

The composites in this article are assumed to consist of
cubic grains. Simulation of complex dielectric constants of
composites consisting of irregular grains is in progress and
will be the subject of our next publication.

V. CONCLUSION

Complex dielectric constants of binary-phase random
composites are simulated on a three-dimensional structure
consisting of cubic grains using a Monte Carlo-finite element
method. The permittivity and ohmic conductivity of the two
phases are assumed to be frequency independent, i.e., inter-
facial polarization is the only polarization mechanism con-
sidered. Numerical results are fitted using Maxwell–Garnett,
Bruggeman symmetrical, and general effective media formu-
las, and the fitting efficiencies of the formulas are quantita-
tively evaluated. The general effective media formula gives
the best fits to our simulation results with a fitting accuracy
better than 3.7%. In the low-frequency region, potential con-
tours tend to avoid passing through one phase in the com-
posite; in the high-frequency region, however, the period of
time is too short for charge accumulation near the interphase
boundaries.
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