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Three-dimensional simulations of the complex dielectric properties
of random composites by finite element method
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Complex dielectric constants of binary-phase random composites are simulated for a
three-dimensional structure consisting of cubic grains using the Monte Carlo-finite element method.
Numerical results are fitted using Maxwell-Garnett, Bruggeman symmetrical, and general effective
media formulas, and the fitting efficiencies of the formulas are quantitatively evaluated. The general
effective media formula gives the best fitting to our simulation results and its accuracy is better than
3.7%. The effects of frequencies on the spatial distribution of electrostatic potentials in dielectric
composites are discussed. The distribution of potential contours drawn in the low-frequency region
and the high-frequency region show great variation, because of different lengths of time for charge
to accumulate near the interphase boundaries. Dielectric spectra are drawn by varying volume
fraction and lossy property of one phase in binary-phase composites. General properties of the
dielectric spectra are discussed and the characteristics of the dielectric spectra caused by the
differences in the lossy properties of the two phases at certain volume fractions are analyzed.
© 2004 American Institute of Physic§DOI: 10.1063/1.1712017

I. INTRODUCTION et all gave an excellent review of the property and modeling
of dielectric mixtures, finding that three-dimension@D)

Composite materials have been extensively used in elegtructural simulations still need development. In this article,

trical applications. The fact that they are often made up of afve simulate the complex dielectric properties of lossy com-

least two constituents or phases enables us to tailor materiagkpsites with a 3D structure using a Monto Carlo-finite ele-
for special purposes. The electrical properties of a compositghent method MC-FEM).

system are determined by the properties of the constituents, This article is organized as follows. In Sec. II, we pro-

interaction between them, and geometrical Configuration. ||'|bose our numerical model and the basic theories under|ying
designing composite materials with specified properties foft. In Sec. Ill, a brief summary of the dielectric mixture for-
electrical applications, one should take these parameters intgulas used for the comparison with the numerical results
consideration. Typical experimental design methods are chafollows. In Sec. IV, the MC-FEM results are compared with
acterized by a classical “trial and error” approacithe  the predictions of mixture formulas, and also analyzed in

modeling and simulations of desired properties of compositether approaches. Section V contains concluding remarks of
systems can offer quick predictions and provide valuable adihis work.

vice for material designers, especially when high perfor-
mance computers have become accessible.

The modeling of dielectric properties of insulation sys-
tems has received considerable fundamental attention in rd: MODELING
cent years. For example, Serastial? have published a se- A. Basic theory
ries of articles on the modeling of complex effective
permittivity by finite element methoFEM) and boundary
integral equation method, simulating both dielectric con-
stants and losses for a periodic binary-phase composit‘é"’l
material’> However, for composites with a random structure, D= eer, (1)
they only calculated the dielectric constants without lodses. ) L _ _ )
Krakovaky and Myroshnychenkoand Tuncet simulated where _the relative permittivitye describes the d|elec_tr|c
both dielectric constants and losses of random binary—phascﬁc’p(‘:'rt'e,s of the matter and constagt=1/36m(nF/m) is
composite materials using two-dimension@D) models. € Permittivity of free space.  _
Ang et al. calculated the dielectric constants and losses of According to Maxwell equationd) obeys
binary-phase c_omposites that consi_ste_d of ph_awh dif-_ VXD= D, )
ferent shapescircles and trianglesdistributed in a matrix

phaseb.® Their models were also two-dimensiofiafuncer ~ Wherep is the volumetric charge density.
The continuity equation is

In dielectric matter, the relation between dielectric dis-
placementD and applied electric fiel& is often linear and
n be expressed as the following equation:
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whereJ is current density.

Substituting Eq(2) into Eq. (3) gives

_ z
v[3+ 2 -0 4
i 4 )

Using Egs.(1) and(4), and Ohm's Law ]

J=0E (5) h :::::::::

. U=U exp(iot)

we have T

V| 0B+ 2 eoeE | =0 6 \EamEaEE

oE+ — €0 | =0, (6) v - , \

whereo is conductivity of the material. X

In the case of sinusoid& of angular frequencw, Eq.
(6) becomes

V(o+iwege)E=0. (7) L _ _ _ _ _
FIG. 1. A parallel plate capacitor filled with a dielectric composite consist-
When the dielectric losses are assumed to be purely ohmidg of two phasesa (gray cubic graiin andb (white cubic graii. The finite
ie. element lattice in this illustration is 2010x 10.
o
€'=— (8)
€

. _ _ _ Therefore, the two phases in this composite have similar
and € in Eq. (7) is written into the form ofe’, Eq. (7) be-  morphologies and are distributed randomly through the
comes whole system.
T = The problem we face is to solve E@.2) in conjunction
Vie'~ie)wE=0. © with boundary conditions

When €' and o are assumed to be frequency independent, )
Eq. (9) becomes d=Ugexpiwt) on the top plane, (13

VX eE=0, (10) ®=0 on the bottom plane, (14)

wheree=¢€’—€"i is called complex relative dielectric con- and continuity conditions on the interface boundaries of the
stants of that medium. two phases

When the dielectric material is nonmagnetimagnetic O —P (15
permeabilityu=1) andw is low enough to neglect the inter- a— Fbo
action between the magnetic and electric fields, the gradient €NX VD, = enxX Vb, (16)

of electric scalar potential is .
wheren is the unit vector normal to the interface.

Vo=-E. (11 The elimination of fringing effects

Substituting Eq(11) into Eq. (10) gives NXVd=0 on the side planes 17)
X = —

VX eve=0 (12 also has to be satisfied. Hemeis normal to the side surface
the resolution of which under specific boundary conditionsconsidered.
forms the basis of our numerical model. Using FEM, we split the composite model shown in Fig.

1 into N, finite elements by means &f nodes. The largest

B. Numerical model node number in this paper is about 360 000. The potential

Our simulation of the effective complex dielectric con- distribution in this space can be approximated inside each

stants of binary-phase composites is performed on the modg,emgnt using |n'FerpoIat|on f.unct'|oﬁ£y so'lvmg the mairix
as shown in Fig. 1. A parallel plate capacitor, with conduct-gauations resulting from this discretization procedure, we
ing planes of areas and separation is filled V\}ith a statis-  ©Ptain the potential and its normal derivation on each node

. . . . . . e . f the mesh.
tically isotropic composite dielectric, consisting of two iso- 0 . e
tropic lossy materials with complex dielectric constasgs Based on this potential distribution, we compute both the

ande, (or with real dielectric constant€, ande;,, and con- electrostatic stored energy and dielectrig loss on ear_:h ele-
ductivity o, and o,). A harmonically oscillating potential ment o_f th? mesh. The energy stored in the capacitor as
differenceU = U, exp(wt) is applied on this capacitor with shown in Fig. 1 can be evaluated'as

an angular frequencw. The two phases in this composite 1 S

are composed of cubic grains, designated as phasg@hase WeZEEOG'F Ué, (18

b by standard Monte Carlo method using random number

generator, bounded by the volume fraction of each phasend energy loss 4s
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1 s resistivity of the two phases in a binary-phase composite
P=3 éoE"F wUg. (19 approaches infinity. This limits the application of percolation
theory to many real heterogeneous systems, particularly di-
Thus, the real and imaginary parts of the effective complex|ectric systems.

dielectric constants of this system can be obtained. Combining percolation considerations into effective me-
More details of FEM appllcatlons to electrical CompOS|tedium theory, McLachlan proposed a genera| effective me-
systems can be found in Refs. 1-6. dium (GEM) formula*

1k 1h 1h 1h
Va(€a —€m)  Vole —€q)

I1l. DIELECTRIC MIXING RULES
E;/t + Ae#’t qult + Ae%t

(23

For composite materials, one of the challenging prob-

lems of both theoretical and practical importance has beefi’® GEM formula has two nonfixed parametérandt to
the prediction and computation of the effective e|ecmCaﬂcharactenze the microstructure or distribution and intercon-

properties. A variety of mixture formulas have been proposed€ctivity of the components in composite materials. Here
based on different theoriés'4 Bergman and Stroud gave an IS also related taj; by Eq.(22). The GEM formula reduces

excellent review of the physical properties of composite melC the Bruggeman symmetrical formula wheal and has
dia for this problent® the mathematical form of the percolation model in certain

Effective medium theory considers the dielectric or elec-Mits:

tric response of a heterogeneous system by assuming that

each particle or unit is, on average, surrounded by a mixturéy- RESULTS AND DISCUSSION
which has the assumed homogenous média. A. Accuracy of the algorithm

Maxwell-Garnett formula can be expressed b . . . .
P y The effective complex dielectric constants of a serial

€,Vp(1—K) + €,(VatKVy) mixing system can be calculated precisely by Lichtenecker’s

€m= €p o+ KVy(€a— €p) 20 serial mixing rulé®
Here e,= €, — €,i and e,=€,— €;i are the complex dielec- i_ E+ ﬁ o
tric constants of phasa and phasé, V,, andV, are the €m €1 € 24

volume fractions Y, +V,=1), ande,=€,,— eni is the ef- . . .
fective complex dielectric constant of the composite. TheWe have performed FEM calculations on serial mixing sys-

depolarization factor of the particles of phase the direc- ;in‘;Vgh.;agfc_ ?I an"?hf)bT‘Ilvl_osr:t’euganﬁothrieiﬁfélthﬁ]rge- h
tion perpendicular to the capacitor platesks Maxwell— ! : - 11 withou ' ug

Garnett formula is generally valid for composites composecfmog]?ﬁgrson;rtwseop?r?e tgf?;ctt?\?e ?:(ca)\r/r!atllggsdigre:t?it: croer?slt:r?tg
of a small volume fraction of particlehasea) randomly gihary p P

dispersed into a host matriphaseb). Bruggeman symmetri- i'TgﬁgedTﬁ?/s F dEel\rc];rr:JSrE;?eest?r]e:raegé:j:ac::nezfa;irlejs ct)rr]i?r?ml
cal formula for the dielectric constants of binary-phase com-f ] m ting th molex_dielectri yn tant fgthr
posite materials can be written®8 or computing the complex Clelectric constants ot three

dimensional lossy composites.
Va(€a—€m)  Vplep—€m) _

€, A€ €pt+ A€ 0. (2D B. Numerical results fitted by the formulas
The nonfixed parameter A can be expressed as Using the model described in Sec. Il, we simulated the
effective complex dielectric constants of four binary-phase
1- ¢c
A= . (22
P 5 8

Here ¢, is the critical volume fraction of phase Because 4
the Bruggeman symmetrical formula treats both phasesona 3 g6
completely symmetrical basis, it is expected to be more ap- ¢ w
plicable to the media where both phases have similar mor- 2 @ o IO (b)
phologies and are randomly distributed through the whole 10 02 04,06 08 1 0 02 0406 08 1
system. 0.04 a 0.06 a

Both the Maxwell-Garnett and Bruggeman symmetrical \asasan O f: F vavvv (d)
formulas are based on effective media theory. It is worth % 0%ageeoRigéSoo000000 |é0-04 o v,
noting that effective media theory is insensitive to the de- ,ﬁo 04 vk, C002le v
tailed structures of composite materials, for example, the ' Ve o OM
connectedness and clustering of one phase in a binary-phase -0.08
random composité: 0 02 0406 08 1 0 02 04y06 08 1

Percolation theory describes a phenomenological power-

s ; IG. 2. The effective complex dielectric constants simulated by MC-FEM
law dependence for the conductivity of a mixture near the'(:.) and the deviations of the predictions of Maxwell-Garitgty, Brugge-

. o ’13 . .
qondUCtor'mSUla_tor transitiot?: Smc_tly speaking, per_cpla- man symmetricalA), and GEM(O) formulas from MC-FEM values for
tion theory is valid only when the ratio of the conductivity or e,=5-8 ande,=1-3i.
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composite  systems: e,=5-8ie,=1-3i, €,=8-3i¢, Vides values of the effective permitivites and dielectric
=3-1i, €,=3-0.03ie,=1-0.00i, ande,=500¢,=1. In  losses, with a coefficient of variatiqe.g. standard deviation
each systemy, ranges from 0.05 to 0.95 at equal intervals divided by averageless than 4%.

of 0.05. For eacl,, we take the average of 200 MC-FEM The dielectric mixture formulas discussed in Sec. Il are
calculations as the effective dielectric constagt This pro-  fitted to €,,'s of each composite system. The quantity

5o \/zn{c' [(€m— €4q)/0-01€/]°+ C"[ (€ — €5q)/0.01e7, 1%}
n-p

(25

is minimized by varying the nonfixed parameters in dielec-the deviations from Maxwell-Garnett formalism being the
tric mixture formulasi*'’ where e/,— eli = €, is the effec-  greatest. The origin is due td) in each of the four compos-
tive complex dielectric constant simulated by MC-FEM, andite systems, the volume fractions of both phased phas®
€equ— €oql = €cqu the effective complex dielectric constant are ranging from 0.05 to 0.95, but Maxwell-Garnett formula
calculated by dielectric mixture formulags,the number of is valid when there is only a very small volume fraction of
data points(heren=19), p the number of variable param- one component an2) neither Maxwell-Garnett formula
eters in dielectric mixture formulas, a@ C” are weighting  nor Bruggeman symmetrical formula consider the connect-
factors. If 5=1, the data of this system could be fitted to anedness or clustering of individual phases in composttes.
accuracy of 1%. The algorithm for minimizingjis based on However, the connectivity property can significantly affect
the solution of corresponding Kuhn—Tucker equationthe effective permitivities and losses of our MC-FEM model
through sequential quadratic meth§drhis fitting technique  at certain composition range.
has been widely used for fitting the predictive formulas to  To quantitatively check the fitting efficiency of
experimental results of both conductiityand dielectric Maxwell-Garnett, Bruggeman symmetrical, and GEM for-
constants’ mulas, we show the5 values obtained by fitting them to
For systems of ¢,=5-8ie,=1-3i, €,=8-3i¢, MC-FEM results, in Table I. It is obvious that thvalues
=3-1i, ande,=3-0.03ie,=1-0.00i,C’ andC” are cho- for GEM formula are much smaller than those for Maxwell—
sen to be 0.5 equally. For systemef=500¢,=1,C’ isset Garnett and Bruggeman symmetrical formulas. It can be
equal to 1 withC" equal to 0, asr, has a value of zero. In found that the fitting of the GEM formula to our numerical
Figs. 2-5, we show the effective complex dielectric con-results has an accuracy better than 3.7%. In fact, the GEM
stants simulated by MC-FEM for the four systems. For comformula can also satisfactorily model the dielectric constants
parison, the deviations of the predictions of Maxwell— of some composite systems such as PMN-pyrocHiboeer
Garnett, Bruggeman symmetrical, and GEM formulas fromits entire composition range. Despite its fitting accuracy,
MC-FEM values are also plotted in Figs. 2-5. It can beGEM formula needs two nonfixed parametérs., A andt)
observed that the deviations of GEM formula’s predictionsto characterize the microstructure or distribution and inter-
from MC-FEM values are very slight. On the other hand,connectivity of the components of composites. Therefore, in
Maxwell-Garnett and Bruggeman symmetrical formulasorder to calculate the parameters of GEM formula for a com-
have much greater deviations from MC-FEM values, withposite system, one need9rior information on that system.

8 : 3 . 3 ] 0.03 =
6 o... 25 .... 25 .... 002 o..
. 8 .t -8 2 .t LE 2 .* . B *
w 5 ..- W ._. W ... w0 0.01 ..-
4 1.5 1.5 ’
het” @ phest () leet @] gl b)
0 02 04,06 038 1 0 02 04,06 038 1 0 02 04,06 08 1 0 1
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FIG. 3. The effective complex dielectric constants simulated by MC-FEMFIG. 4. The effective complex dielectric constants simulated by MC-FEM
(@) and the deviations of the predictions of Maxwell-Garri#&t}, Brugge- (@) and the deviations of the predictions of Maxwell-Garrigtj, Brugge-
man symmetricalA), and GEM(O) formulas from MC-FEM values for man symmetricalA), and GEM(O) formulas from MC-FEM values for
€,=8-3i ande,=3-i. €,=3—-0.03i ande,=1-0.00i.
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FIG. 5. The effective complex dielectric constants simulated by MC-FEM
(@) and the deviations of the predictions of Maxwell-Gariigtj, Brugge-
man symmetrical/A), and GEM(O) formulas from MC-FEM values for
€,=500 ande,=1.

C. Potential distribution

When a harmonically oscillating dielectric field is ap-
plied on dielectric composites at low frequencies, one effect
often observed as a result of the difference in dielectric prop- 5 10 15 20
erties of the components is the accumulation of the charge X
carriers near the interphase boundaries. This effect is known

. . . . FIG. 6. Potential contours on section plariegsX=9 and(b) Y=9 at low
as the interfacial or Maxwell-Wagner—Sillars polarization. ¢, s%). The permittivities and ohmic conductivities of

equency(w=10 rad s
Interfacial polarization can cause the undulation of spatiaphasea (gray cell$ and phasé are €,=5 o,=10 ¢ Sm % and e/ =2 o,
distribution of the amplitudes of potentials in composites.=10"1°Sm*, respectively. The volume fraction of phaaés 0.2.
lllustrating this point, a dielectric composite system with 0.2
volume fraction of phase is chosen. The dielectric con-
stants and ohmic conductivities of phas@nd phasé are
e,=5¢€,=2 and 0,=3x10 *Sm 1 oy,=5x10"1Sm I, such a manner as to avoid passing through pleaséhe
respectively. A harmonically oscillating potential difference undulation of the distribution of the amplitudes of the poten-
is applied to this system with an angular frequeney10 tials is obvious. On the other hand, as the frequency rises to
rad $'%, resulting in a distribution of the potential amplitudes w=10°rad s %, this undulation becomes smooth and slight
in the composite. In Fig. 6, we show the potential contoursas shown in Fig. 7. In this case, the period of potential os-
on the section planes vertical ¥ andY axes. It is evident cillation is not sufficient enough for the charge to accumulate
that potential contours on these sections tends to distribute inear the inter-phase boundaries.

TABLE I. The 6 values and parameters of GEM, Bruggeman symmetrical, and Maxwell-Garnett formulas
fitted to the MC-FEM results.

Composite S Parameter
Bruggeman  Maxwell— Bruggeman Maxwell—
GEM symmetrical Garnett GEM symmetrical Garnett
€,=5-8i 0.0477 0.3411 1.2797 t=1.176 A=2.613 K=0.176
€,=1-3i A=3.133 (¢.=0.277)
(¢c=0.243)
€,=8-3i 0.0153 0.1817 0.6403 t=1.176 A=2.572 K=0.188
€p=3-1i A=3.108 (¢.=0.280)
(¢.=0.244)
€,=3-0.03i 0.0970 1.2751 4.6968 t=1.176 A=2.805 K=0.183
e,=1-0.00i A=3.133 (¢.=0.263)
(¢.=0.242)
€,=500 3.6714 21.1596 71.2710 t=1.290 A=4.321 K=0.023
=1 A=5.601 (¢.=0.188)
(¢.=0.151)

Downloaded 24 Jul 2010 to 152.3.158.168. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 95, No. 12, 15 June 2004 Zhao et al. 8115

20 5
(@) 45
e — I
4
g
15 w35
e ———— 3
M 25
N 10 2
0 5 10
LOG(w)
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i , ‘~,
SE 0 ’y
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Y _
-4
20 -6
(b) 0 5 10
. — LOG(w)
————
15 m FIG. 9. Dielectric spectra of the composite\gt=0.10 calculated by MC-
e~ FEM for €,=5, 0,=10 ®Sm ! and ¢/,=2, 0,=10 8 Sm™?! (dot-dashed

line), 1071°Sm ! (dotted ling, or 10 **Sm™? (solid line), respectively.

5 each volume fraction, the microstructure of the composite is

fixed. The permittivities and ohmic conductivities of phase

and phaseb are taken as,=5, 0,=10"°Sm ! and €]

=2, 0,=108Sm %, 10 °Sm !, or 10 1*Sm !, respec-

tively. At eachV,, three dielectric spectra are drawn for

different o,’'s. These dielectric spectra are shown in Figs.

FIG. 7. Potential contours on section plariesX=9 and(b) Y=9 at high ~ 8—13, respectively.

frequency =10%rad ). The permittivities and ohmic conductivities of It can be observed that all the plots f# versus logw)

phasea (gray cells and phase are =5, 7,=10"°Sm * and€,=2,  haye a similar shape, characterized by a flat-sharp-flat de-

op=10 ""Sm -, respectively. The volume fraction of phaaés 0.2. , . .
crease ok, [Figs. §a—13a)]. In the low-frequency region,
lower oy, results in the greates;,, at constan¥V,. ForV,

D. Dielectric spectra =0.15[Fig. 10@)], the difference betwees,, values for

_ _ _ _ o,=10"8Sm ! and 10 *Sm ! is the greatest. The plots of
In this section, we analyze the dielectric spectra for a_s

X ¢ €, versus logw) show little frequency dependence in the
lossy composite system with phaa@nd phasd, as shown

o . X high-frequency region, andg/'s for different o, values
in Fig. 1. The volume fraction of phase(V,) is chosen to nearly have no difference.

be 0.05, 0.10, 0.15, 0.20, 0.50, and 0.80, respectively. For

5 10 15 20
X

3 10
(a)
2.8 8
q2.6 g g
) W
2.4
22 4
2 2
0 5 10 0 5 10
LOG(w) LOG(w)
4 4
b B b
. (b) o e (b)
5 ~
w 0 w 0
D P
3= 8 -2
— s
—4 -4
-6 -6
0 5 10 0 5 10
LOG(w) LOG(w)

FIG. 8. Dielectric spectra of the composite\4t=0.05 calculated by MC-  FIG. 10. Dielectric spectra of the compositeVgt=0.15 calculated by MC-
FEM for €,=5, 0,=10 *Sm™! and ¢/=2, 0,=10 8 Sm ! (dot-dashed = FEM for €,=5, 0,=10 ®Sm! and ¢,=2, 5,=10 8 Sm ! (dot-dashed
line), 1071°Sm* (dotted ling, or 107 ' Sm? (solid line), respectively. line), 1071°Sm ! (dotted ling, or 10711 Sm™? (solid line), respectively.
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(a)

5 10
LOG(w)

FIG. 11. Dielectric spectra of the composite\at=0.20 calculated by MC-
FEM for €,=5, 0,=10 *Sm ! and ¢,=2, 0,=10 8 Sm™! (dot-dashed
line), 107 1°Sm™* (dotted ling, or 10°**Sm ! (solid line), respectively.

The plots of logé) versus logw) display subtle differ-
ences in the low-frequency region. In Figh8(V,=0.05),
wheno,=10"11sm?
the curve of log€l) versus logw); when op,=10"8Sm %,
however, the peak disappears; and the plot ofdfgyersus

log(w) for o,=10"1°Sm™! can be regarded as a transition

stage in this evolution. In Fig. (B) (V,=0.10), similar

peaks and evolution processes can also be observed. How-
ever asV, increases, these differences becomes less notice-

able. WhenV,=0.15 [Figs. 1Gb)-13b)], the features be-
come insignificant for the logf,) versus logw) plots. When
V,=0.5 [Figs. 12b)—13b)], the plots of logé;) versus
log(w) for different o, values become undistinguishable. In
the high-frequency region, logf) values all decrease lin-
early with the increase of I¢@) [Figs. §b)—13b)]. It is

5 10
LOG(e)

(b)

5
LOG(w)

10

FIG. 12. Dielectric spectra of the compositevgt=0.50 calculated by MC-
FEM for €,=5, 0,=10 *Sm™! and /=2, 0,=10"8 Sm ™! (dot-dashed
line), 1071°Sm* (dotted ling, or 107 ' Sm? (solid line), respectively.
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4.55
45
4.45
E44
435
43

4.25
0

LOG(w)

(b

5
LOG(w)

10

FIG. 13. Dielectric spectra of the composite\at=0.80 calculated by MC-
FEM for €,=5, 0,=10 ®Sm ! and ¢/,=2, 0,=10 8 Sm™?! (dot-dashed
line), 1071°Sm ! (dotted ling, or 10 **Sm™? (solid line), respectively.

interesting to note that the slope of all these lines is a con-
stant—1.0 demonstrating thaf,, is inverse proportional te
in the high-frequency region.

The composites in this article are assumed to consist of
cubic grains. Simulation of complex dielectric constants of
composites consisting of irregular grains is in progress and
will be the subject of our next publication.

V. CONCLUSION

Complex dielectric constants of binary-phase random
composites are simulated on a three-dimensional structure
consisting of cubic grains using a Monte Carlo-finite element
method. The permittivity and ohmic conductivity of the two
phases are assumed to be frequency independent, i.e., inter-
facial polarization is the only polarization mechanism con-
sidered. Numerical results are fitted using Maxwell-Garnett,
Bruggeman symmetrical, and general effective media formu-
las, and the fitting efficiencies of the formulas are quantita-
tively evaluated. The general effective media formula gives
the best fits to our simulation results with a fitting accuracy
better than 3.7%. In the low-frequency region, potential con-
tours tend to avoid passing through one phase in the com-
posite; in the high-frequency region, however, the period of
time is too short for charge accumulation near the interphase
boundaries.
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