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a b s t r a c t

Elastomers and gels can be formed by interpenetrating two polymer networks on a

molecular scale. This paper develops a theory to characterize the large deformation and

damage of interpenetrating polymer networks. The theory integrates an interpenetrat-

ing network model with the network alteration theory. The interpenetration of one

network stretches polymer chains in the other network and reduces its chain density,

significantly affecting the initial modulus, stiffening and damage properties of the

resultant elastomers and gels. Double-network hydrogels, a special type of interpenetrat-

ing polymer network, have demonstrated intriguing mechanical properties including

high fracture toughness, Mullins effects, and necking instability. These properties have

been qualitatively attributed to the damage of polymer networks. Using the theory, we

quantitatively illustrate how the interplay between polymer-chain stiffening and

damage-induced softening can cause the Mullins effect and necking instability. The

theory is further implemented into a finite-element model to simulate the initiation and

propagation of necking instability in double-network hydrogels. The theoretical and

numerical results are compared with experimental data from multiple cyclic compressive

and tensile tests.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An interpenetrating polymer network (IPN) consists of two or more polymer networks, at least one of which is
polymerized and/or crosslinked in the immediate presence of the other(s) (Sperling and Mishra, 1996). As illustrated in
Fig. 1(a), the polymer networks are interlaced on a molecular scale but not covalently bonded to each other. Above glass
transition temperatures, IPNs are generally capable of large deformation and they are referred to as IPN elastomers. The
IPNs can also imbibe a large amount of solvents to swell into IPN gels. If water is used as the solvent, the resultant gels are
called IPN hydrogels.

Interpenetrating polymer networks have found important applications in diverse technologies, including organic solar
cells (Halls et al., 1995; Ma et al., 2005), drug delivery (Risbud et al., 2000), tissue engineering(Gong et al., 2003), polymer
actuators (Ha et al., 2006; Zhao and Suo, 2010), and energy harvesters (Brochu et al., 2009; Koh et al., 2009). Many of these
applications rely on the unique mechanical properties of IPNs. For example, the IPN dielectric elastomer developed by Ha
et al. (2006) can achieve over 300% voltage-induced strain without prestretch, while the actuation strain of unprestretched
common elastomers is less than 40% (Zhao and Suo, 2007). It has been shown that the giant actuation strain of IPN
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dielectric elastomers is due to their low moduli at small deformation but steep stiffening at moderate deformation (Zhao
and Suo, 2010). Constitutive models of IPN dielectric elastomers have also been developed to design polymers for actuators
and energy harvesters (Goulbourne, 2011; Suo and Zhu, 2009). As another example, Gong et al. (2003) used two polymer
networks with distinctly different chain lengths to form a particular type of IPN hydrogels. This so-called double-network
hydrogels can reach fracture energy over 1000 J m�2 despite about 90% water content of the hydrogel (Nakajima et al.,
2009; Tanaka et al., 2005). This value exceeds the fracture energy of rubber at low crack velocities, which is in distinct
contrast to the fragile nature of common hydrogels. The anomalous high toughness of the double-network hydrogels has
made them a promising scaffold for regenerating load-bearing tissues (Yasuda et al., 2009) and for delivering drugs
(Risbud et al., 2000).

These applications aside, understanding the mechanical properties of IPNs is a fundamental and challenging topic in
polymer mechanics and physics. Although intensive studies on IPNs have been carried out, many intriguing phenomena
related to the mechanics of IPNs are still not well understood. For example, the high toughness of double-network
hydrogels has been attributed to stretch-induced softening or Mullins effect of the hydrogels (Brown, 2007; Tanaka, 2007),
a mechanism analogous to the transformation-toughening in brittle materials (see e.g. McMeeking and Evans, 1982). The
Mullins effect of double-network hydrogels as illustrated in Fig. 2(b) has been qualitatively attributed to the damage of
polymer networks (Webber et al., 2007; Yu et al., 2009). However, it is still not clear how to quantitatively relate the large
deformation and damage to the characters of the polymer networks such as polymer-chain lengths and densities. In
addition, necking instability as illustrated in Fig. 2(b) has been observed in tensile tests of some double-network hydrogels
(Na et al., 2006) but not others (Webber et al., 2007). The exact mechanism that causes this difference is still not well
understood.

The aim of this work is to develop a mechanistically motivated model that is capable of explaining various mechanical
phenomena of IPN elastomers and gels under large deformation. The model will adapt the classical network model (see e.g.
Arruda and Boyce, 1993) into an interpenetrating network model. The model will further implement the network
alteration theory (Marckmann et al., 2002) to characterize the damage of the IPNs under deformation. With the model, we
will quantitatively show that the interpenetration of one network stretches polymer chains in the other network and
reduces its chain density, significantly affecting the initial modulus, stiffening and damage properties of the resultant IPNs.
The characters of stiffening and subsequent damage of one network determine the special Mullins effect of double-
network hydrogels. The necking instability of double-network hydrogels requires both the damage-induced softening of
one network and the stiffening of the other network.

The plan of the paper is as follow. Section 2 presents the constitutive equations for the large deformation and damage of
IPNs. In Section 3, we discuss the effect of interpenetration of other networks on the mechanical properties of IPNs. We
further compare the theoretical results with experimental data from cyclic compressive and tensile tests of double-network

Fig. 1. Schematics of an interpenetrating polymer network (a) and the distribution of the chain densities and chain lengths of two networks (b).
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hydrogels (Webber et al., 2007). Section 4 discusses the necking instability experimentally observed in double-network
hydrogels (Na et al., 2006). The theory is further implemented into a finite-element model to simulate the initiation and
propagation of the necking instability. Section 5 gives the conclusive remarks of the paper.

2. Constitutive model of interpenetrating polymer networks

2.1. Free energy function

In thermodynamic systems, the constitutive properties of hyperelastic materials are given by their free energy
functions. The free energy of an IPN comes from two molecular processes: (1) stretching polymer chains in the polymer
networks that constitute the IPN, and (2) mixing polymers of different networks and, in the case of an IPN gel, solvent
molecules (Flory and Rehner, 1943b; Hong et al., 2008). Following Flory and Rehner (1943b), the free energy function of an
IPN composed of m networks takes the form

W ¼
Xm

i ¼ 1

WS
i þWM

ð1Þ

where WS
i is the free energy due to stretching the ith network per unit volume of the IPN, and WM is the free energy due to

mixing polymers and solvents per unit volume of the IPN.
The free energy of mixing depends on the concentrations of different constituents of the IPN. Over the time scale of

deforming IPN elastomers and gels, the variation of polymer and solvent concentrations have been observed to be
negligible (see e.g. Gong et al., 2003; Ha et al., 2006; Na et al., 2006; Tanaka et al., 2005; Webber et al., 2007). This paper
aims to explain experimental phenomena of IPNs that do not involve concentration variation during deformation, so WM is
assumed to be constant in Eq. (1). The IPNs are further taken to be incompressible, as their bulk moduli are much higher

Fig. 2. Double-network hydrogels, a type of interpenetrating polymer network, can give Mullins effect (a) and necking instability (b) under deformation.
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than shear moduli. Therefore, the principal stresses of the IPN can be calculated as

s1 ¼
Xm

i ¼ 1

l1
@WS

i

@l1
�P ð2aÞ

s2 ¼
Xm

i ¼ 1

l2
@WS

i

@l2
�P ð2bÞ

s3 ¼
Xm

i ¼ 1

l3
@WS

i

@l3
�P ð2cÞ

where l1, l2, and l3 are the principal stretches of the IPN, and P the hydrostatic pressure that can be determined from
boundary conditions.

2.2. Interpenetrating eight-chain network model

The free energy function for stretching polymer networks can be characterized by either phenomenological models or
network models (see e.g. a recent review by Boyce and Arruda, 2000). In order to relate the physical (microscopic)
structures of IPNs to their deformation mechanism, we choose to follow the network-model approach to construct the free
energy function of IPNs. Polymer networks of the IPNs are considered as crosslinked networks of freely joint chains
(Rubinstein and Colby, 2003). The average unstretched length of a chain of the ith network is

ffiffiffiffi
ni
p

li, where ni is the number
of freely joint links on a chain of the ith network, and li the length of the link. The stretch of a polymer chain of the ith
network can be calculated as Li ¼ ri=

ffiffiffiffi
ni
p

li, where ri is the stretched length of the chain. The chain has a full extension
length of nili so that the stretch limit of the chain is

ffiffiffiffi
ni
p

. The effect of the stretch limit on the stretch–stress behavior of
IPNs is captured by Langevin statistics (Kuhn and Grun, 1942), and the free energy of the chain can be expressed as

wi ¼ nikT
bi

tanhbi

þ log
bi

sinhbi

� �
ð3Þ

where bi ¼ L�1
ðLi=

ffiffiffiffi
ni
p
Þ and L�1 is the inverse Langevin function defined by LðxÞ ¼ cothðxÞ�1=x.

In fabricating IPNs, if any crosslinked polymer network swells homogeneously and isotropically in monomers (or
polymer solutions) of networks to be polymerized (or crosslinked), the elasticity of the crosslinked network will not
change significantly before and after other networks’ polymerization (or crosslinking). In this case, we can assume any
polymer network of an IPN is swollen in monomers (or polymer solutions) of others, when considering the contribution of
this network to the free energy of the IPN as illustrated in Fig. 3. Therefore, the elasticity of one polymer network will be

Fig. 3. Schematics of the interpenetrating eight-chain network model. The interpenetration of one network stretches polymer chains in the other

network and reduces its chain density.
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affected in two ways by the interpenetration of other networks: (1) to stretch polymer chains isotropically and
homogeneously without externally applied forces, and (2) to decrease the density of polymer chains, i.e.

Li ¼ C�1=3
i L0i ð4aÞ

Ni ¼
N0i
Ci

ð4bÞ

where Ci is the volume concentration of the ith network in the IPN, L0i is the stretch of a chain of the ith network due to the
IPN’s deformation, N0i is the number of chains of the ith network per unit volume of the IPN, and Ni is the number of chains
of the ith network per unit volume of the ith network (without others).

A network model is needed to relate the deformation of an IPN to the stretches of polymer chains (see e.g. Arruda and
Boyce, 1993; Flory and Rehner, 1943a; Treloar and Riding, 1979; Wang and Guth, 1952). We choose the eight-chain
network model developed by Arruda and Boyce (1993) due to its simple mathematical expression and its ability to
characterize various deformation modes with only two parameters. As illustrated in Fig. 3, a unit cube from a network of
the IPN has eight chains along the half diagonals of the cube. Unit cubes of different networks are overlapped to form the
IPN (Fig. 3). As the IPN is deformed, the chains of the same network are stretched by the same ratio. Considering Eq. (4a),
the stretch of a chain on the ith network of the IPN can be calculated as

Li ¼ C�1=3
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1þl
2
2þl

2
3

3

s
ð5Þ

The stretch consists of two parts: C�1=3
i due to the interpenetration of other networks and solvent, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2

1þl
2
2þl

2
3Þ=3

q
due to the deformation of the IPN. Although the deformation-induced stretch is the same for all networks, the total
stretches for different networks can be different, since the interpenetration-induced stretches depend on the concentra-
tions of networks.

Considering Eqs. (3)–(5), the free energy from stretching the ith polymer networks per unit volume of the IPN can be
calculated as (Boyce and Arruda, 2001)

WS
i ¼ CiNinikT

bi

tanhbi

þ log
bi

sinhbi

� �
ð6Þ

By substituting Eq. (6) into Eq. (2), we can calculate the principal stresses of the IPN as

s1 ¼
Xm
i ¼ 1

C1=3
i Ni

ffiffiffiffi
ni
p

kTbi

3Li
l2

1�P ð7aÞ

s2 ¼
Xm
i ¼ 1

C1=3
i Ni

ffiffiffiffi
ni
p

kTbi

3Li
l2

2�P ð7bÞ

s3 ¼
Xm
i ¼ 1

C1=3
i Ni

ffiffiffiffi
ni
p

kTbi

3Li
l2

3�P ð7cÞ

The stress in Eq. (7) accounts for the contributions from stretching polymer chains in all networks of an IPN under
deformation. It should be noted that the stress in Eq. (7) is not equal to a summation or average of stresses in single-
network polymers arranged in parallel, because the interpenetration of one network reduces polymer-chain densities of
other networks in an IPN and also stretches polymer chains in other networks without externally applied forces.

For uniaxial tension or compression of an IPN, the stress can be calculated as

s¼
Xm

i ¼ 1

C1=3
i Ni

ffiffiffiffi
ni
p

kTbi

3Li
l2
�

1

l

� �
ð8Þ

where l is the stretch in tension or compression.

2.3. Alteration of interpenetrating polymer networks

Stretch-induced softening or Mullins effect has been widely observed in elastomers, especially in filled rubbers. A
variety of theories and models have been developed for the phenomena, including damage theories (Blanchard and
Parkinson, 1952; Govindjee and Simo, 1991; Lion, 1996), domain-evolution theories (Johnson and Beatty, 1993; Mullins
and Tobin, 1965; Qi and Boyce, 2004), phenomenological theories (Dorfmann and Ogden, 2003; Miehe, 1995), micro-
mechanics models (Bergstrom and Boyce, 1999), and network alteration theory (Marckmann et al., 2002).

Recently, Mullins effect and large-strain hysteresis have been observed in deforming double-network hydrogels, a
special type of IPN (Gong et al., 2003; Nakajima et al., 2009; Webber et al., 2007). The Mullins effect of double-network
hydrogels is substantially different from that of filled rubbers in that (Webber et al., 2007) (1) the deformed hydrogels
have no substantial recovery of their virgin behaviors when the hydrogels are left to rest without stress; (2) the hysteresis

X.H. Zhao / J. Mech. Phys. Solids 60 (2012) 319–332 323
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of the hydrogels in the second cycle is negligible, if the deformation of the second cycle is smaller than the maximum
deformation of the first cycle, as illustrated in Fig. 2(a); and (3) the hysteretic dissipation has negligible dependence on
deformation rate, implying that there is negligible viscous dissipation (Gong et al., 2003; Webber et al., 2007).

The Mullins effect of double-network hydrogels has been qualitatively attributed to the breaking of polymer chains and
crosslinks in the shorter-chain network under deformation (Webber et al., 2007; Yu et al., 2009). We implement the
network alteration theory (Marckmann et al., 2002) into the shorter-chain networks of the hydrogels to characterize the
Mullins effect. The physical picture of the model is illustrated in Fig. 4. A hydrogel with two networks is under
deformation. As the shorter-chain network is stretched close to its extension limit, the chains and crosslinks in the
network break (Lake and Thomas, 1967). As a result, some of the chains become inactive terminal chains that do not
contribute to the elasticity of the network, while other chains rearrange into longer chains with higher number of links, as
illustrated in Fig. 4(b). The formation of longer chains is more significant in physically crosslinked networks than in
chemically crosslinked networks (An et al., 2010; Sun et al., 2011).

To capture the above physical picture, the chain length and density of the shorter-chain network (i.e. network A) are
expressed as functions of the maximum stretch of the chains (Marckmann et al., 2002), i.e.

NA ¼NAðL
max
A Þ ð9aÞ

nA ¼ nAðL
max
A Þ ð9bÞ

where the maximum stretch Lmax
A ¼ max

0rtr t
½LAðtÞ�, and t is the current time in the deformation process. The parameter Lmax

A

can be regarded as an internal variable for the free energy function W, and the thermodynamic inequality requires

@W

@Lmax
A

dLmax
A r0 ð10Þ

where dLmax
A is an infinitesimal increase of Lmax

A . Following Chagnon et al. (2006), Eqs. (9a) and (9b) can be taken as

exponential functions:

NA ¼NA0 exp½�pðLmax
A �C�1=3

A Þ� ð11aÞ

nA ¼ nA0 exp½qðLmax
A �C�1=3

A Þ� ð11bÞ

where nA0 and NA0 are the link number per chain and chain density in the undeformed shorter-chain network, and p and q

are material parameters to characterize the decrease of chain density and increase of chain length. The network-alteration
process and Eq. (10) require pZqZ0. In one extreme case, if p¼q40, we have NAnA maintains constant, so no inactive
terminal chain forms during deformation. In another extreme case, if p4q¼0, we have nA maintains constant, which
means the chain length in the shorter-chain network does not change during deformation.

Substituting Eqs. (11a), (11b) into Eq. (8), and considering nA0NA0vA¼1 and nBNBvB¼1 for volume conservation, we have
the stress for uniaxial tension or compression as

s¼
C1=3

A kTbA

3vA
ffiffiffiffiffiffiffi
nA0
p

LA
exp

1

2
q�p

� �
ðLmax

A �C�1=3
A Þ

� �
þ

C1=3
B kTbB

3vB
ffiffiffiffiffi
nB
p

LB

!
l2
�

1

l

� � 
ð12Þ

Fig. 4. Schematics of the breaking of chains and crosslinks in the shorter-chain network.
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where vA and vB are the volumes of single links in network A and B, respectively. For simplicity, assuming v¼vA¼vB, the
stress of Eq. (12) can be normalized as

vs
kT
¼

C1=3
A bA

3
ffiffiffiffiffiffiffi
nA0
p

LA
exp

1

2
q�p

� �
ðLmax

A �C�1=3
A Þ

� �
þ

C1=3
B bB

3
ffiffiffiffiffi
nB
p

LB

 !
l2
�

1

l

� �
ð13Þ

3. Large deformation and damage of interpenetrating polymer networks

3.1. Initial modulus and stiffening

The mechanical property of an IPN greatly depends on the distribution of polymer-chain lengths (i.e. ni) and chain
densities (i.e. Ni). In IPN elastomers and gels, the difference in chain lengths of different networks is usually set to be very
large (Gong et al., 2003; Ha et al., 2006; Nakajima et al., 2009). Thus, an IPN with two networks A and B usually has a
bimodal distribution of chain lengths, such that one network has a higher density of shorter chains, while the other has a
lower density of longer chains, i.e. nA05nB and NA0bNB as illustrated in Fig. 1(b).

Let us first consider an IPN composed of two networks that have no alteration of either network during deformation, i.e.
p¼q¼0 in Eq. (13). Considering the chain length distribution as shown in Fig. 1(b), we take nA0¼50 and nB¼1000. The
stretch–stress relations for such an IPN are plotted in Fig. 5. For an IPN elastomer (i.e. CAþCB¼1), as the concentration of
polymer network with longer chain increases, the initial modulus of the IPN decreases while the stiffening of the IPN is
accelerated (Fig. 5(a)). In the case of an IPN gel (i.e. CAþCBo1), increasing the solvent concentration has a similar effect as
increasing the concentration of longer-chain network (Fig. 5(b)). This phenomenon can be understood as follow. An IPN
with higher concentration of the shorter-chain network has a higher chain density, and thus a higher initial modulus. On
the other hand, a higher concentration of the longer-chain network and solvent can stretch the chains in the shorter-chain
network closer to the extension limit, and thus accelerates the stiffening. Therefore, the initial modulus and stiffening
property of an IPN can be tuned by varying polymer concentrations and chain lengths of different networks in the IPN.

Fig. 5. Stress–stretch curves of IPN elastomers with various polymer ratios (a) and IPN gels with various solvent concentrations (b).
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The mechanical properties of bimodal elastomers have been studied by Berry et al. (1956), Flory (1960) and more
recently by Mark (1999) and von Lockette et al. (2002). However, these elastomers usually have the long and short chains
crosslinked into the same network, and they are assumed to be connected in serial arrangements in the models (von
Lockette et al., 2002). On the other hand, the long and short chains in IPNs are not covalently bonded to each other, and
they are arranged in an interpenetrating way in our model as illustrated in Fig. 3.

3.2. Alteration of the shorter-chain network

The breaking of polymer chains in the shorter-chain network gives the Mullins effect of double-network hydrogels
(Webber et al., 2007). In this section, we will discuss the Mullins effect through the alteration of the shorter-chain
network. We set CA¼0.02, CB¼0.08, nA0¼50, and nB¼1000, and plot the stress–stretch relations for various values of p and
q in Fig. 6. If q¼0, the chain length of the shorter-chain network does not change, while the chain density decreases during
deformation. As shown in Fig. 6(a), the double-network hydrogels with different values of p all stiffen around the same
stretch limit. Moreover, as the value of p increases, the size of the hysteresis loops in stress–strain curves increases,
because a higher value of p gives more inactive terminal chains under the same deformation. On the other hand, if q¼p, all
the chains in the shorter-chain network transform into active longer chains during deformation. The extension limit of the
network and the hysteresis both increase with p, as shown in Fig. 6(b).

In Fig. 7(a), we plot the stress–stretch curve of a double-network hydrogel under multiple cycles of loading and
unloading. It can be seen that the deformed hydrogel does not recover its virgin behavior and that the hysteresis in cycle 3
is negligible because the stretch in cycle 3 is smaller than the maximum stretch of cycle 2. These characters are consistent
with the experimental observations of the Mullins effect in double-network hydrogels (Webber et al., 2007).

Next, we set CA¼0.08, CB¼0.02, nA0¼50, nB¼1000, and p¼q¼0.15 to model a new double-network hydrogel with the same
water concentration and network alteration parameters but different volume ratios of the two networks. The stress–stretch curve
of the new hydrogel is plotted in Fig. 7(b). It can be seen that the initial modulus of the new hydrogel is higher than that of the
previous one, because the shorter-chain network of the new hydrogel has a higher chain density. However, the hysteresis loop of
the new hydrogel becomes smaller than that of the previous one, because of the reduction of the interpenetration-induced stretch
in the shorter-chain network. Therefore, the concentrations of the longer-chain network and solvent can significantly affect the
stress and hysteresis of the resultant hydrogels, since they affect the interpenetration-induced stretch of the shorter-chain
network. On the other hand, the chain length and crosslink density of the longer-chain network do not significantly influence the
stress and hysteresis, because the shorter-chain network carries most of the load and undergoes damage.

3.3. Comparison with experimental results of double-network hydrogels

Webber et al. (2007) carried out a series of cyclic uniaxial compressive and tensile tests on the double-network
hydrogel invented by Gong et al. (2003). Multiple sets of the nomial stress-stretch data from Webber et al.’s experiments

Fig. 6. Mullins effect in double-network hydrogels with q¼0 (a) and q¼p (b).
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Fig. 7. Mullins effect in double-network hydrogels under multiple loading–unloading cycles, and the effect of interpenetration on the stress-stretch

hysteresis.

Fig. 8. Comparison of experimental (Webber et al., 2007) and theoretical stress-stretch curves for double-network hydrogels under one cycle of

compression (a–c) and tension (d–f).

X.H. Zhao / J. Mech. Phys. Solids 60 (2012) 319–332 327
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are plotted in Figs. 8 and 9. In this section, we will compare the experimental results on deformation and Mullins effect
with our model’s prediction using a minimum amount of fitting parameters. The volume concentration of the two
networks in the hydrogels used in Webber et al.’s tests are CA¼0.013 and CB¼0.087. We further set nB¼20nA0, since the
chain length of the longer-chain network does not significantly affect the stress and hysteresis of the hydrogel. In addition,
Marckmann et al. (2002) and Chagnon et al. (2006) noted that the values of p and q are generally close to each other in the
network alteration theory for Mullins effect. Therefore, we further set p¼q in our model. Based on Eq. (13) and the above
consideration, the nominal stress of the double-network hydrogel under uniaxial tension or compression can be expressed as

s¼
kT

v

C1=3
A bA

3
ffiffiffiffiffiffiffi
nA0
p

LA
exp �

1

2
pðLmax

A �C�1=3
A Þ

� �
þ

C1=3
B bB

3
ffiffiffiffiffi
nB
p

LB

 !
l�

1

l2

� �
ð14Þ

There are three fitting parameters in Eq. (14): v accounts for the initial modulus of the hydrogel, nA0 for the stiffening
character, and p for the alteration of the network. The reasonable ranges for these parameters are 10�26 mZvZ10�28 m,
nA041 and pZ0. The parameters are allowed to vary in these ranges to minimize the difference between experimental
and theoretical stresses, using the least-square method. This gives the fitted parameters v¼1.213�10�27 m�3,
nA0¼20.024, and p¼0.3698. With the fitted parameters, we plot the nominal stress-stretch curves to compare with
experimental data. From Figs. 8 and 9, it can be seen that the theoretical results match relatively well with the
experimental data from single and multiple cycles of tensile tests. However, the model overestimates the stress-stretch
hysteresis from the compressive tests. The inconsistence may be due to the simple network-alteration function, Eq. (11),
employed here. To improve the consistency between the model’s prediction and experimental results, more fitting
parameters may be used to characterize the initial modulus, stiffening, and network alteration of the hydrogel (see e.g.
Chagnon et al., 2006). Since the current paper is focused on the physical ideas of the model, we choose to use the minimum
amount of fitting parameters.

4. Necking instability

4.1. Stiffening and softening of interpenetrating networks

Initiation and propagation of necking instability has been observed by Na et al. (2006) in stretching a bar of a double-
network hydrogel, as illustrated in Fig. 2(b). However, using another double-network hydrogel with similar concentrations
of the same polymers but higher crosslink densities, Webber et al. (2007) cannot observe the necking instability during
tensile tests.

We propose the following physical picture to explain the phenomena. Under deformation, the chains in the shorter-
chain network are first stretched close to their extension limit, which gives the stiffening of the hydrogel. Meanwhile,
breaking of chains and crosslinks in the shorter-chain network softens the hydrogel. If the stiffening effect dominates over
the softening effect, the stress in the hydrogel will increase drastly when the extension limit is approached, and the high
stress may cause fracture of the hydrogel before necking. If the softening effect dominates over the stiffening effect at
relative low stresses, the necking instability can set in before the hydrogel fractures.

After the necking instability, if the bar is further deformed, polymer chains in the longer-chain network can be streched
close to their extension limit and the double-network hydrogel stiffens again. As a result, the necking stablizes at a thin
region of the bar with a higher stretch, as illustrated in Fig. 2(b). Under further deformation, the thin region propagates
with consumption of the thick region.

4.2. Effects of material parameters

The material parameters of the double-network hydrogel in Webber et al.’s tests (2007) are given in Section 3.3, i.e.
CA¼0.013, CB¼0.087, v¼1.213�10�27 m�3, nA0¼20.024, p¼q¼0.3698, and nB¼20nA0. In Fig. 10(a), we plot the nominal
stress-stretch curve using Eq. (14) with these parameters. It can be seen that the stiffening effect maintains dominant at

Fig. 9. Comparison of experimental (Webber et al., 2007) and theoretical stress-stretch curves for double-network hydrogels under two cycles of tension.
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a relatively high stress. Therefore, Webber et al. (2007) observed the fracture of their IPNs before the necking instability.
On the other hand, for IPNs with lower crosslink densities and thus longer chain lengths (e.g. nA0¼30 in Fig. 10(b)), the
softening effect becomes dominant at relative low stresses, where peaks appear on the nominal stress-stretch curves, and
thus the necking instability sets in. Further, with the stiffening of the longer-chain network, the bar of the hydrogel
stabilizes at a thin region, as shown in Figs. 2(b) and 10(a). The theoretical results are consistent with the fact that Na et al.
(2006) observed the necking instability in a double-network hydrogel with a lower crosslink density of the shorter-chain
network (i.e. higher nA0) than that of Webber et al.’s hydrogel. In addition, the nominal stress for the transition from the
thick state to the thin state can be calculated following the approach used in deformation theory of metal plasticity (Fleck
et al., 1994; Hutchinson and Neale, 1981). If no unloading is involved during the transition, the hydrogel can be treated as a
reversible hyperplastic material with the same stress-stretch behavior (Wang and Hong, 2011). According to Maxwell’s
rule in phase transition, the nominal stress for the transition can be calculated by equating the two shaded areas on the
curve for nA0¼30 in Fig. 10(a). Similar transition of states occurs in instability of structures, such as the propagation of
buckles along a pipe (Chater and Hutchinson, 1984) and coexistent states in dielectric elastomers (Zhao et al., 2007).

If we keep the chain length of the shorter-chain network (nA0) to be constant, the necking instability can also be tuned
by varying the network-alteration parameter, p. A higher value of p can give a dominant softening effect at lower stress
and stretch, and thus give the necking instability as shown in Fig. 10(b). Physically, the value of p may be varied by
changing the way how a network is crosslinked. A physically crosslinked network usually has a larger value of p than a
chemically crosslinked network, because physical crosslinks are generally weaker than covalent bonds (An et al., 2010;
Sun et al., 2011).

Fig. 10. The effects of shorter-chain length (a), network alteration parameter (b), and longer-chain length (c) on the necking instability of double-

network hydrogels.
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In addition, by varying the chain length of the longer-chain network (nB), the stretch of the thin region in the double-
network hydrogel can be varied, as shown in Fig. 10(c). This is because nB determines the extension limit of the longer-
chain network, and thus determines the stretch of the thin region in the hydrogel.

4.3. Numerical simulation of the neck instability

In order to further illustrate the physical ideas of the necking instability in double-network hydrogels, we implement
the interpenetrating network model with network alteration into finite element software, ABAQUS, with the user
subroutine, UHYPER. A bar of the hydrogel is modeled with rectangular axisymmetric elements as shown in Fig. 11(a). The
material parameters are taken to be CA¼0.02, CB¼0.08, nA0¼8, nB¼16, and p¼q¼0.8. The bar undergoes uniaxial tension
through prescribed displacements on one end of the bar, as illustrated in Fig. 11(a). We define the effective stretch of the
bar as l/L, where l and L are the lengths of the bar at deformed and undeformed states, respectively.

From Fig. 11(a), it can be seen that the bar initially undergoes uniform deformation, when l/Lo1.5. As the effective
stretch further increases, the necking instability sets in, with a thin region initiating around one end of the bar. The
initiation of the instability gives a sudden decrease of the nominal stress in the hydrogel bar as shown in Fig. 11(b). The
sudden decrease of the nominal stress is corresponding to the transition of the bar from a homogeneous metastable state
(e.g. l/L¼1.5) to an inhomogeneous stable state (e.g. l/L¼1.51). This is consistent with the experimental observation of
reduced nominal stress at the instability initiation in double-network hydrogel (Na et al., 2006). After the necking, the
thick and thin states coexist in the bar at a constant nominal stress, with the thin state growing at the expense of the thick
state (Fig. 11(a) and (b)). The value of the nominal stress for the transition is determined by Maxwell’s rule as shown in
Fig. 10(a). Once all the thick state has transited into the thin state (e.g. l/L¼2.7), the nominal stress increases rapidly with
the stretch, due to the stiffening of the longer-chain network (Fig. 11(a) and (b)). If the effective stretch is reduced, the bar
deforms homogeneously back to its original shape. The necking instability does not occur during the unloading process,
because the shorter-chain network has been damaged. The energy dissipated during the damage of the shorter-chain

Fig. 11. Numerical simulation of the initiation and propagation of necking instability in a bar of a double-network hydrogel (a) and the evolution of

nominal stress in the bar (b).
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network is reflected by the hysteresis loop on the stress-stretch curve in Fig. 11(b). Further, if the deformed the bar is
stretched again, no necking instability occurs either. The theoretical and numerical results in Fig. 11(a) and (b) are
consistent with the experimental observations by Na et al. (2006).

5. Conclusion

A mechanistically motivated model has been developed to account for the large deformation and damage of
interpenetrating polymer networks. By integrating the interpenetrating network model and the network alteration
theory, our model is capable of quantitatively characterizing the Mullins effect and necking instability experimentally
observed in double-network hydrogels. The interpenetration of one network stretches polymer chains in the other
network and reduces its chain density, significantly affecting the initial modulus, stiffening and damage properties of the
resultant IPNs. The characters of stiffening and subsequent damage of one network determine the special Mullins effect of
double-network hydrogels. The necking instability of double-network hydrogels requires both the damage-induced
softening of one network and the polymer-chain stiffening of the other network. Our model is further implemented into
finite-element software to simulate the initiation and propagation of necking instability in double-network hydrogels. The
theoretical and numerical results are compared with experimental data from multiple compressive and tensile tests. We
note that Wang and Hong (2011) reported a phenomenological model for double-network hydrogels, when the current
paper was under review.

Acknowledgment

Funding for this research was provided by the NSF’s Research Triangle MRSEC (DMR-1121107) and Pratt School of
Engineering at Duke University. The author acknowledges J.P. Gong’s comments on a draft of the paper, and the helpful
discussions from J.P. Gong, Z.G. Suo, C. Creton, and W. Hong.

References

An, Y.H., Solis, F.J., Jiang, H.Q., 2010. A thermodynamic model of physical gels. J. Mech. Phys. Solids 58, 2083–2099.
Arruda, E.M., Boyce, M.C., 1993. A 3-dimensional constitutive model for the large stretch behavior of rubber elastic-materials. J. Mech. Phys. Solids 41,

389–412.
Bergstrom, J.S., Boyce, M.C., 1999. Mechanical behavior of particle filled elastomers. Rubber Chem. Technol. 72, 633–656.
Berry, J.P., Scanlan, J., Watson, W.F., 1956. Cross-link formation in stretched rubber networks. Trans. Faraday Soc. 52, 1137–1151.
Blanchard, A.F., Parkinson, D., 1952. Breakage of carbon-rubber networks by applied stress. Ind. Eng. Chem. 44, 799–812.
Boyce, M.C., Arruda, E.M., 2000. Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523.
Boyce, M.C., Arruda, E.M., 2001. Swelling and mechanical stretching of elastomeric materials. Math. Mech. Solids 6, 641–659.
Brochu, P., Yuan, W., Zhang, H., Pei, Q.B., Asme, 2009. Dielectric elastomers for direct wind-to-electricity power generation. SMASIS 1, 197–204.
Brown, H.R., 2007. A model of the fracture of double network gels. Macromolecules 40, 3815–3818.
Chagnon, G., Verron, E., Marckmann, G., Gornet, L., 2006. Development of new constitutive equations for the Mullins effect in rubber using the network

alteration theory. Int. J. Solids Struct. 43, 6817–6831.
Chater, E., Hutchinson, J.W., 1984. On the propagation of bulges and buckles. J. Appl. Mech.—Trans. ASME 51, 269–277.
Dorfmann, A., Ogden, R.W., 2003. A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int. J. Solids Struct. 40,

2699–2714.
Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gradient plasticity—theory and experiment. Acta Metall. Mater. 42, 475–487.
Flory, P.J., 1960. Elasticity of polymer networks cross-linked in states of strain. Trans. Faraday Soc. 56, 722–743.
Flory, P.J., Rehner, J., 1943a. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 11, 512–520.
Flory, P.J., Rehner, J., 1943b. Statistical mechanics of cross-linked polymer networks II Swelling. J. Chem. Phys. 11, 521–526.
Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y., 2003. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158.
Goulbourne, N.C., 2011. A constitutive model of polyacrylate interpenetrating polymer networks for dielectric elastomers. Int. J. Solids Struct. 48,

1085–1091.
Govindjee, S., Simo, J., 1991. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating mullins effect. J. Mech.

Phys. Solids 39, 87–112.
Ha, S.M., Yuan, W., Pei, Q.B., Pelrine, R., Stanford, S., 2006. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles.

Adv. Mater. 18 887.
Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., Holmes, A.B., 1995. Efficient photodiodes from interpenetrating

polymer networks. Nature 376, 498–500.
Hong, W., Zhao, X.H., Zhou, J.X., Suo, Z.G., 2008. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779–1793.
Hutchinson, J.W., Neale, K.W., 1981. In: Carlson, D.E., Shield, R.T. (Eds.), Finite Strain J2 Deformation Theory, Martinus Nijhoff Publishers, Netherlands,

pp. 238–247.
Johnson, M.A., Beatty, M.F., 1993. A constitutive equation for the mullins effect in stress controlled uniaxial extension experiments. Continuum Mech.

Thermodyn. 5, 301–318.
Koh, S.J.A., Zhao, X.H., Suo, Z.G., 2009. Maximal energy that can be converted by a dielectric elastomer generator. Appl. Phys. Lett. 94, 262902.
Kuhn, W., Grun, F., 1942. Relations between elastic constants and the strain birefringence of high-elastic substances. Kolloid Zh. 101, 248–271.
Lake, G.J., Thomas, A.G., 1967. Strength of highly elastic materials. Proc. R. Soc. London Ser. A—Math. Phys. Sci. 300 108.
Lion, A., 1996. A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Continuum Mech.

Thermodyn. 8, 153–169.
Ma, W.L., Yang, C.Y., Gong, X., Lee, K., Heeger, A.J., 2005. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating

network morphology. Adv. Funct. Mater. 15, 1617–1622.
Marckmann, G., Verron, E., Gornet, L., Chagnon, G., Charrier, P., Fort, P., 2002. A theory of network alteration for the Mullins effect. J. Mech. Phys. Solids 50,

2011–2028.
Mark, J.E., 1999. Improved elastomers through control of network chain-length distributions. Rubber Chem. Technol. 72, 465–483.

X.H. Zhao / J. Mech. Phys. Solids 60 (2012) 319–332 331



Author's personal copy

McMeeking, R.M., Evans, A.G., 1982. Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242–246.
Miehe, C., 1995. Discontinuous and continuous damage evolution in Ogden-type large-strain elastic-materials. Eur. J. Mech. A—Solids 14, 697–720.
Mullins, L., Tobin, N.R., 1965. Stress softening in rubber vulcanizates. I. Use of a strain amplification factor to describe elastic behavior of filler-reinforced

vulcanized rubber. J. Appl. Polym. Sci. 9 2993.
Na, Y.H., Tanaka, Y., Kawauchi, Y., Furukawa, H., Sumiyoshi, T., Gong, J.P., Osada, Y., 2006. Necking phenomenon of double-network gels. Macromolecules

39, 4641–4645.
Nakajima, T., Furukawa, H., Tanaka, Y., Kurokawa, T., Osada, Y., Gong, J.P., 2009. True chemical structure of double network hydrogels. Macromolecules 42,

2184–2189.
Qi, H.J., Boyce, M.C., 2004. Constitutive model for stretch-induced softening of the stretch–stress behavior of elastomeric materials. J. Mech. Phys. Solids

52, 2187–2205.
Risbud, M.V., Hardikar, A.A., Bhat, S.V., Bhonde, R.R., 2000. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release

system for antibiotic delivery. J. Controlled Release 68, 23–30.
Rubinstein, M., Colby, R.H., 2003. Polymer Physics. Oxford University Press.
Sperling, L.H., Mishra, V., 1996. The current status of interpenetrating polymer networks. Polym. Adv. Technol. 7, 197–208.
Sun, J.-Y., Zhao, X., Illeperuma, W.R.K., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z., 2011. PAAm-alginate interpenetrating network hydrogel with extremely

high toughness. Unpublished.
Suo, Z.G., Zhu, J., 2009. Dielectric elastomers of interpenetrating networks. Appl. Phys. Lett. 95, 232909.
Tanaka, Y., 2007. A local damage model for anomalous high toughness of double-network gels. EPL 78, 56005.
Tanaka, Y., Kuwabara, R., Na, Y.H., Kurokawa, T., Gong, J.P., Osada, Y., 2005. Determination of fracture energy of high strength double network hydrogels.

J. Phys. Chem. B 109, 11559–11562.
Treloar, L.R.G., Riding, G., 1979. Non-Gaussian theory for rubber in biaxial strain. 1. Mechanical-properties. Proc. R. Soc. London Ser. A—Math. Phys. Eng.

Sci. 369, 261–280.
von Lockette, P.R., Arruda, E.M., Wang, Y., 2002. Mesoscale modeling of bimodal elastomer networks: constitutive and optical theories and results.

Macromolecules 35, 7100–7109.
Wang, M.C., Guth, E., 1952. Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144–1157.
Wang, X., Hong, W., 2011. Pseudo-elasticity of a double network gel. Soft Matter 7, 8576–8581.
Webber, R.E., Creton, C., Brown, H.R., Gong, J.P., 2007. Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40,

2919–2927.
Yasuda, K., Kitamura, N., Gong, J.P., Arakaki, K., Kwon, H.J., Onodera, S., Chen, Y.M., Kurokawa, T., Kanaya, F., Ohmiya, Y., Osada, Y., 2009. A novel double-

network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol. Biosci. 9, 307–316.
Yu, Q.M., Tanaka, Y., Furukawa, H., Kurokawa, T., Gong, J.P., 2009. Direct observation of damage zone around crack tips in double-network gels.

Macromolecules 42, 3852–3855.
Zhao, X.H., Hong, W., Suo, Z.G., 2007. Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys. Rev. B 76, 134113.
Zhao, X.H., Suo, Z.G., 2007. Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 91, 061921.
Zhao, X.H., Suo, Z.G., 2010. Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104, 178302.

X.H. Zhao / J. Mech. Phys. Solids 60 (2012) 319–332332


