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Abstract

A type of diagram is proposed as microstructure model of polycrystalline materials, Voronoi diagram in the

Laguerre geometry based on random closed packing of spheres (RCP-LV diagram), and discussed in detail. The

volumes of spheres are set to serve lognormal distribution, which is strongly inherited by distribution of cell volumes in

the RCP-LV diagram. The geometrical and topological properties in the RCP-LV diagram and the Poisson–Voronoi

diagram (PV diagram) are compared with those properties of real polycrystalline materials, and it is found that the

lognormal distribution is a better approximation to the cell volume and face number distribution in the RCP-LV

diagram than in the PV diagram. It is also shown clearly that coefficient of variance of cell volumes in the RCP-LV

diagram is controlled by coefficient of variance of sphere volumes. This makes it easy to simulate polycrystalline

microstructure with different dispersion of grain volumes. The RCP-LV diagram is probably superior to the PV dia-

gram for the simulation of polycrystalline materials.
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1. Introduction

Because polycrystalline material structure is

composed of an enormous number of grains, its

properties and performance are determined not

only by characteristics of individual grains but also
by the connectivity and interaction between them.

In simulation of material properties, it is a key step
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to construct a model accurate enough to represent

the microstructure of real material. During the

past decades, several types of models has been

used to simulate microstructure, among which the

Poisson–Voronoi diagram (PV diagram) has been

extensively used and studied by Meijering [1],
Gilbert [2] and Kumar et al. [3]. The PV diagram is

composed of an array of convex, space-filling and

non-overlapping polyhedrons, which can be used

to represent the grains of polycrystalline material.

The polyhedrons of the PV diagram possess the

properties that four edges share a vertex and three

faces share an edge, which are also observed in real
ed.
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material. However, some inadequate features of

the PV diagram do exist in representation of real

material: The average number of faces per poly-

hedron is 15.5355 in the PV diagram [3], beyond

the range of 12–14, where the average number per
grain in real material lies [4–9]; the polyhedron

volumes are assumed to obey a gamma distribu-

tion in the PV diagram [3], but grain volumes

usually have lognormal distribution in a real

material [10,11]; moreover, real materials usually

have a coefficient of variation (CV) of grain vol-

umes, ranging from 1.09 to 2.13 [10], which is

obviously greater than the invariant CV value of
polyhedron volumes in the PV diagram (0.424) [3].

Therefore, it seems not adequate for the PV dia-

gram with such a fixed CV value to accurately

represent various real materials with quite different

statistical characteristics.

In this paper, a model referred to as the RCP-

LV diagram, which is probably better than the PV

diagram in simulation of real material, is pro-
posed. Construction of this model will be de-

scribed in detail in Section 2; thereafter, in Section

3, the corresponding properties in the RCP-LV

diagram and the PV diagram are discussed, vis-a-

vis the geometrical and topological properties in

real materials. Eventually, a conclusion is drawn

that RCP-LV diagram is probably superior to the

PV diagram for simulation of polycrystalline
materials.
2. Modeling

The model proposed in this paper is referred to

as the RCP-LV diagram, that is the Voronoi dia-

gram in the Laguerre geometry based on random
closed packing of spheres.
2.1. Voronoi diagram

The Voronoi diagram (VD) is constructed

with a set of n separate points, S ¼ fp1; p2; . . . ; png.
If the normal Euclidean distance between pi and
any other point q in the space is denoted as
dEðpi; qÞ, a Voronoi cell (v-cell) corresponding to pi
is defined as
vEðpiÞ ¼ fpjp 2 R3; dEðp; piÞ < dEðp; pjÞ; j 6¼ ig
ð1Þ

i.e., a set of points in three-dimensional space R3

which are closer to the nucleus point pi than to any

other nucleus points in S. In this sense, vEðpiÞ is the
dominant region of pi. Each point in S generates its

own v-cell; and all v-cells form a VD, which di-

vides three-dimensional space into an array of
convex, space-filling and non-overlapping polyhe-

drons with planar faces. The well-known PV dia-

gram is a kind of VD with point set S generated

through a homogeneous Poisson point process.

2.2. Voronoi diagram in Laguerre geometry

Voronoi diagram in Laguerre geometry (LV
diagram), also referred to as power diagram, is a

kind of weighted Voronoi diagram [12]. To point

pi in set S, a weight ri is assigned, forming a weight

set r ¼ fr1; r2; . . . ; rng, and the distance between pi
and any point q is measured in Laguerre geometry

dLðpi; qÞ ¼ f½dEðpi; qÞ�2 � r2i g
1=2 ð2Þ

Similar to VD, an lv-cell corresponding to point

pi is defined as

vLðpiÞ ¼ fpjp 2 R3; dLðp; piÞ < dLðp; pjÞ; j 6¼ ig
ð3Þ

and the set of all lv-cells, VLðS; rÞ ¼ fvlðp1Þ;
vlðp2Þ; . . . ; vlðpnÞg, is called an LV diagram. Here

vlðpiÞ is the dominant region of pi with a weight of

ri. lv-Cells are also space-filling convex polyhe-
drons without overlapping interconnected in a

topological manner in the same way as grains in

polycrystalline materials.

2.3. Random closed packing of spheres (RCPS)

RCPS has been extensively studied by both

experiments and computer simulations [13–16].
Computer algorithms used to generate RCPS can

be classified into two catalogues: sequential gen-

eration method and collective rearrangement

algorithms. In this paper a modified rearrange-

ment algorithm is employed to generate RCPS

[15,17] (Fig. 1).



Fig. 1. A typical cross section of random closed packing of

spheres, which have a lognormal volume distribution with

CV¼ 2.0.
Fig. 3. Three cross sections of the RCP-LV diagram drawn

based on random closed packing of spheres, which have a

lognormal volume distribution with CV¼ 2.0.

Z. Fan et al. / Computational Materials Science 29 (2004) 301–308 303
2.4. The RCP-LV diagram

The RCP-LV diagram is an LV diagram con-

structed based on RCPS, which provides point set

S consisting of all the centers of spheres and weight

set r of the corresponding radii (Fig. 2). In the

RCP-LV diagram, each sphere has its own lv-cell,

which, in return, encloses the whole sphere.

Neighboring spheres belong to adjacent lv-cells.
Tangent plane of two tangent spheres is just the

sharing face of the corresponding polyhedrons.

Thus, the volume distribution of lv-cells strongly

inherits that of the original spheres. RCPS serves

as a template in the generation of the RCP-LV

diagram. In this paper, lv-cells are assumed to

represent individual grains and RCP-LV diagram
Fig. 2. A cross section of the RCP-LV diagram illustrating that

RCPS serves as a template in the generation of the RCP-LV

diagram.
the microstructure of polycrystalline materials
(Fig. 3).

2.5. Experimental procedure

In this paper, RCPS generation is done using

collective rearrangement algorithm, whose details

can be found in Refs. [15,17]; and RCP-LV dia-

gram is drawn through four-dimensional convex
hull constructed by the Qhull software package

[18–20]. The experimental procedure is as follow:

1. We first generate random closed packing of

10,000 spheres within a cubic space. We keep

the mean volume constant, i.e. unity, and the

volume distribution lognormal with CV varying

from 0.6 to 3.0 at intervals of 0.2, so 13 types of
RCPS with different CV values are obtained.

2. We repeat this procedure for three times. In this

way, for each type of RCPS, four groups of

10,000 spheres each are generated.

3. Each group of RCPS is transformed into an

RCP-LV diagram.

4. To eliminate possible boundary effect, spheres

centered within outermost shell of the initial
cube two times the mean sphere diameters thick

are not included in the further statistical proce-

dure. As a result, each group of RCPS results in

an RCP-LV diagram with about 5500 effective

lv-cells.

5. For further analysis, we merge the four sets of

statistical data of the RCP-LV diagrams drawn
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based on RCPS with the same CV value into

one.

6. Three-dimensional PV diagram with 96,000 v-

cells (called pv-cells hereafter) is drawn using
Qhull software package [18–20] to compare

with our RCP-LV diagrams with various CV

values.
Fig. 4. The mean and standard deviation (std) of lv-cell vol-

umes in the RCP-LV diagram vs. CV of sphere volumes in

corresponding RCPS.

Fig. 5. The histogram of lv-cell volumes in the RCP-LV dia-

gram and supposed gamma and lognormal distributions with

corresponding parameters. This RCP-LV diagram is drawn

based on RCPS, which have a lognormal volume distribution

with CV¼ 0.8.
3. Results and discussion

3.1. Volume and face number distributions

As the volume distribution in real material has

been suggested to be lognormal by Rhines and

Patterson [10] and Okazaki and Conrad [11], log-

normal distribution is used to analyze our statis-

tical data. Its probability density function is

f ðx; ljrÞ ¼ 1

xr
ffiffiffiffiffiffi
2p

p exp
�ðlnðxÞ � lÞ2

2r2

 !
ð4Þ

where l and r are two parameters related to

expectation EðxÞ and variance VarðxÞ by formulas

EðxÞ ¼ eðlþðr2=2ÞÞ ð5Þ

VarðxÞ ¼ eð2lþ2r2Þ � eð2lþr2Þ ð6Þ
For comparison, we also introduce the gamma

distribution, whose probability density function is

f ðx; ajbÞ ¼ 1

baCðaÞ x
a�1e�x=b ð7Þ

where a and b are two parameters related to

expectation EðxÞ and variance VarðxÞ by formulas

EðxÞ ¼ a� b ð8Þ

VarðxÞ ¼ a� b2 ð9Þ

In formulas (5), (8) and (6), (9), EðxÞ and VarðxÞ
can be given by the unbiased estimators �x and
1

n�1

Pn
i¼1 ðxi � �xÞ2, where xi is the volume of the ith

cell in certain diagram and �x is the average of all

the cell volumes in corresponding diagram. Now,
we suppose the distributions of lv-cell volumes in

RCP-LV diagrams and pv-cell volumes in PV

diagram to be lognormal or gamma distribution,

whose parameters are calculated using formulas
(5) and (6) or formulas (8) and (9), respectively.

Thereafter, we test these two hypotheses, using v2

goodness-of-fit test [21] (Figs. 4–6). Although the

hypothesis that the distributions of lv-cell volumes

in RCP-LV diagrams is gamma or lognormal at
the significance level 0.05 is rejected, all the v2 of

supposed lognormal distributions v2log are much



Fig. 6. The v2 values for volume distribution types test, in

which the critical value v20:05 is 14.067.

Fig. 7. The histogram of face number per lv-cell in the RCP-LV

diagram and supposed gamma and lognormal distributions

with corresponding parameters. This RCP-LV diagram is

drawn based on RCPS, which have a lognormal volume dis-

tribution with CV¼ 0.8.

Fig. 8. The v2 values for face number distribution types test, in

which the critical value v20:05 is 14.067.
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smaller than corresponding v2 of supposed gamma

distributions v2gam. On the other hand, although the

hypothesis that the distributions of pv-cell vol-

umes in PV diagram is gamma or lognormal at the

significance level 0.05 is rejected, v2log is much lar-

ger than v2gam in this case, which is consisted with
the conclusion suggested by Kumar that pv-cell

volumes approximately obey a gamma distribu-

tion in PV diagram [3]. So we can conclude that,

lognormal distribution is a better approximation

to the volume distribution in the present RCP-LV

diagram than gamma distribution is; on the other

hand, gamma distribution gives a better fit to

volume distribution in PV diagram than lognor-
mal distribution. The reason that volume distri-

bution in the present RCP-LV diagram is more

lognormal-like is that cell volume distribution is

strongly influenced by that of spheres.

As the face number distribution in real material

has also been suggested by Rhines and Patterson

[10] to be lognormal, it is necessary to analyze the

face number distribution in RCP-LV diagram and
PV diagram by the same procedure as for volume

distribution. Corresponding results are shown in

Figs. 7 and 8. We also come to the same conclu-

sion that the lognormal distribution is a better

approximation to the face number distribution in

the RCP-LV diagram than the gamma distribu-

tion; and the gamma distribution gives a better fit
to face number distribution in the PV diagram

than the lognormal distribution.

3.2. More analysis for RCP-LV diagram

For RCPS with certain CV value of sphere
volumes, corresponding statistics, average number

of faces per cell F , average number of edges per

face EF , and CV value of lv-cell volumes distri-

bution CVcell, are obtained. Fig. 9 shows the plot

of F vs. CV of sphere volumes in corresponding



Fig. 9. The average number of faces per lv-cell in the RCP-LV

diagram vs. CV of sphere volumes in corresponding RCPS.

Fig. 10. The average number of edges per face in the RCP-LV

diagram vs. CV of sphere volumes in corresponding RCPS.

Fig. 11. CV of lv-cell volumes distribution in the RCP-LV

diagram vs. CV of sphere volumes in corresponding RCPS.
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RCPS. The relation between EF and CV is drawn
in Fig. 10, and the CVcell vs. CV is shown in Fig.

11. Using a quadratic expression, F vs. CV and EF

vs. CV can be described as

F ¼ 0:09� ðCVÞ2 � 0:77� CVþ 15 ð10Þ
with a norm of residuals of 0.038,

EF ¼ 0:0048� ðCVÞ2 þ 0:041� CVþ 5:2 ð11Þ
with a norm of residuals of 0.0021.

We also fit a cubic expression to the relation of

CVcell vs. CV:
CVcell ¼ �0:075� ðCVÞ3 þ 0:33� ðCVÞ2

þ 0:36� CVþ 0:18 ð12Þ

with a norm of residuals of 0.068.

These figures show that when CV increases

from 0.60 to 3.0, F decreases from 14.11 to 13.04,

EF from 5.14 to 5.09, while CVcell increases from

0.49 to 2.19. It is worth mentioning here that, for

most real materials, the average number of faces

per grain F , the average number of edges per face

EF and the CV values of grain volumes distribu-
tion are in these ranges (Table 1), while the cor-

responding statistic data in PV diagram are

obviously far from these ranges. It is also shown

clearly that CVcell is controlled by CV of spheres in

RCPS. This makes it easy to simulate polycrys-

talline microstructure with different CV values.

3.3. Simulation of grain growth

Rhines utilized three statistical parameters to

measure width of properties� distributions while

studying grains� growth [10]

ln rE ¼
Pm

i¼1 lnEi � lnE
� �2
m� 1

" #1=2
ð13Þ

ln rF ¼
Pn

i¼1 ln Fi � ln F
� �2
n� 1

" #1=2
ð14Þ



Table 1

F , E and CV of real materials

No. of grains F E CV Ref.

b-brass 30 14.5 5.142 – [4]

Aluminum–tin alloy 100 12.48 5.02 (5.06) – [5]

A steel 1215 13.184 – – [6]

A pure iron – 13.42 – – [7]

Mixed bubbles 150 13.26 5.095 – [8]

Uniform bubbles 600 13.702 5.111 – [9]

Vegetable cells 450 13.802 5.123 – [9]

Pure aluminum 92–349 – – 1.09–2.13 [10]

Fig. 13. The fraction of cell faces with three edges vs. the width

of the distribution of edges per face in the RCP-LV diagrams.
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ln rV ¼
Pn

i¼1 ln Vi � ln V
� �2
n� 1

" #1=2
ð15Þ

where ln Vi , ln Fi and lnEi are the log of the volume
of the ith grain, the log of the number of faces of

the ith grain and the log of the number of edges of

the ith face, respectively; and ln V , ln F , lnE are

their corresponding averages. He suggested that,

in a real material, the relations of ln rE vs. ln rV ,

ln rF vs. ln rV , and the fraction of 3-edged faces vs.

ln rE are all linear. These phenomena can also be

found in the RCP-LV diagram (Figs. 12 and 13).
Therefore, we may expect to use the RCP-LV

diagram constructed based on RCPS with different

CV values to simulate the statistical properties of

grains in a real material under different grain

growth stages.
Fig. 12. The widths of the distributions of faces per cell and

edges per face vs. the width of the cell volume distribution in the

RCP-LV diagrams.
3.4. Characteristics of the neighboring cells of an lv-

cell

In materials science, a considerable interest is

taken in the relationship between the value of a

given characteristic for an individual grain and the

mean value of that characteristic for contiguous

grains. The most extensively studied characteristic
is FF : The mean number of faces for the neigh-

boring grains of an F -faced grain, which can be

approximated by the function [22]

FF ¼ Aþ B=F ð16Þ

We fit this function to the statistical data of 13

groups of RCP-LV diagrams based on RCPS with

different CV values of sphere volumes; and, corre-

spondingly, get 13 pairs of parameters A and B
under those CV values (Figs. 14 and 15). From



Fig. 14. FF vs. number of faces per lv-cell in the RCP-LV

diagram drawn based on RCPS, which have lognormal volume

distribution with CV¼ 0.8.

Fig. 15. The parameters A and B in function (14) vs. CV of

sphere volumes in corresponding RCPS.
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Fig. 15, we can learn that while the plot of A vs. CV
oscillates in a narrow range, the plot of B vs.

CV increases monotonously and approximately

linearly.
4. Conclusion

We propose a model referred to as the RCP-LV
diagram to simulate geometrical and topological
characteristics in the microstructure of polycrys-

talline material. The distribution of lv-cell volumes

in the RCP-LV diagram is strongly influenced by

the lognormal distribution of sphere volumes in

corresponding RCPS. In the RCP-LV diagram,
statistical data, including volume and face number

distributions, F , E and CVcell are much closer to

those of a real material than in the PV diagram.

Moreover, the relations of ln rE vs. ln rV , ln rF vs.

ln rV , and the fraction of 3-edged faces vs. ln rE are

consistent with the corresponding properties in the

grain growth process for a real material. Hence,

this model can also be used to reproduce structure
evolution during grain growth.
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