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When a layer of a semicrystalline polymer is subject to a tensile force in its plane and a voltage
through its thickness, the deformation of the layer is initially homogeneous, but it then localizes.
The electromechanical instability sets in when the force and the voltage reach critical conditions.
The critical conditions are determined in this paper and are related to the following two special
cases: the Considère condition for the necking instability and the Stark–Garton condition for the
pull-in instability. The general critical conditions show that a tensile force can markedly reduce the
critical voltage. © 2009 American Institute of Physics. �DOI: 10.1063/1.3186078�

Semicrystalline polymers are widely used as dielectrics
in cables, capacitors, and actuators.1–4 Such applications
require that dielectrics sustain high voltages. A major
mode of failure caused by the high voltages is the pull-in
instability.5–9 Subject to a voltage, a layer of a polymer thins
down, and the electric field increases. The positive feedback
may lead to the pull-in instability upon reaching a critical
voltage. In various applications, the layer is often subject to
a combination of a voltage and a tensile force. Experiments
have shown that the tensile force can substantially reduce the
critical voltage.10–16

This paper calculates the critical conditions for the elec-
tromechanical instability in a semicrystalline polymer sub-
ject to combined electric voltage and mechanical force. The
general critical conditions recover the Stark–Garton condi-
tion for the pull-in instability5 and the Considère condition
for the necking instability.5,17 Furthermore, the general criti-
cal conditions show that a tensile force can indeed reduce the
critical voltage.

To focus on essential ideas, consider a model illustrated
in Fig. 1. A layer of a polymer, thickness H and sides L
�L in the undeformed state, is sandwiched between two
compliant electrodes. The polymer is then subject to a volt-
age � through the thickness and a biaxial force P in the
plane. The electromechanical instability typically sets in at a
large deformation. At such a large deformation, the change in
volume is typically small compared to the change in shape.
Following a common practice, we assume that the polymer is
incompressible. Consequently, when the thickness reduces to
�H, the two sides stretch to L /��.

As illustrated in Fig. 2, the biaxial force P causes a
biaxial stress of magnitude, �= P / �HL���. Because the
polymer is taken to be incompressible, superimposing a state
of hydrostatic compression to the polymer does not change
the state of deformation in the polymer. Consequently, the
state of deformation in the polymer subject to the biaxial
tension in the plane is the same as the state deformation in
the polymer subject to a uniaxial compression through the
thickness.

The voltage causes an electric field, E=� / �H��. This
electric field also causes the polymer to deform �Fig. 2�.
When the deformation is large, the polymer chains change
configuration, but the electric polarization may be negligibly

affected by the large deformation. As a commonly adopted
idealization, the dielectric behavior of the polymer is taken
to be liquidlike, such that the permittivity � is a constant
unaffected by the deformation.18 For an incompressible di-
electric with a constant permittivity, the effect of the electric
field on deformation can be described by a compressive
Maxwell stress, �E2.19

When the polymer is subject to a combination of biaxial
force P and voltage �, the state of deformation in the poly-
mer is the same as that in the polymer subject to a uniaxial
compressive stress of magnitude �+�E2. The natural strain
in the thickness direction is ln �. We will describe the me-
chanical behavior of the polymer by using a power-law
model, where the uniaxial stress is taken to scale with the
natural strain to some power.9,17 Consequently, under the
combined voltage and force, the effective stress relates to the
stretch as

� + �E2 = K�− ln ��N, �1�

where N and K are parameters used to fit experimentally
recorded stress-strain relation. The parameter N measures
how steeply the polymer strain-hardens. Stark and Garton
assumed the linear elastic behavior, N=1.5 However, the
stress-strain relations for semicrystalline polymers signifi-
cantly deviate from the linear elastic behavior, with more
realistic values being N=0.1–0.6. The parameter K measures
the yield strength of the polymer and is much smaller than
the elastic modulus of the polymer. Consequently, the Stark–
Garton model in its original form significantly overestimates
the critical voltage. The modified model using the power-law
adequately describes the experimentally measured critical
voltage.9

In an analysis of stability, it is essential to specify the
variables independently controlled in experiments. In this pa-
per, we assume that experiments independently vary the
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FIG. 1. �a� A layer of a semicrystalline polymer in the undeformed state. �b�
The polymer deforms under a voltage and a biaxial force P.
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force P and the voltage �. In terms of the independent vari-
ables, Eq. �1� becomes

P

HL��
+ �� �

H�
�2

= K�− ln ��N. �2�

The equation embodies the two following competing trends
as the polymer deforms: material hardening and geometric
softening. Material hardening results from the monotonically
increasing stress-strain curve and is described by the power-
law model K�−ln ��N. Geometric softening results from the
thinning of the layer and is described by the stretch appear-
ing in the denominators of the two terms on the left-hand
side of Eq. �2�.

Figure 3�a� represents Eq. �2� by plotting the normalized
force as a function of the stretch at several fixed values of the
voltage. The overall shape of the curves reflects the compe-
tition between material hardening and geometric softening.
When deformation is small, ��1, material hardening pre-
vails, and the force must increase to cause further deforma-
tion. When deformation is large, ��1, geometric softening
prevails, and the force decreases to cause further deforma-
tion. For a fixed value of the voltage, as the polymer de-

forms, the force attains a maximum, corresponding to the
critical condition for the instability to set in. For the special
case that the polymer is subject to a biaxial tensile force P
in the absence of voltage, �=0, Eq. �2� reduces to P
=KHL�−ln ��N�1/2. Maximizing the function P���, we ob-
tain the critical stretch �C=exp�−2N� and the critical stress
�C=K�2N�N. This special case recovers the Considère con-
dition for the necking instability.17

Alternatively, Fig. 3�b� represents Eq. �2� by plotting the
normalized voltage as a function of the stretch at several
fixed values of the force. The overall shape of the curves also
reflects the competition between material hardening and geo-
metric softening. For the special case that the polymer is
subject to the voltage � in the absence of the force, P=0,
Eq. �2� reduces to �=H�K /��−ln ��N/2�2. Maximizing the
function ����, we obtain the critical stretch �C=exp�−N /2�
and the critical electric field EC=�K /��N /2�N/2. This special
case recovers the modified Stark–Garton condition for the
pull-in instability.9

Observe that the necking instability sets in at the critical
stretch �C=exp�−2N�, and the pull-in instability sets in at the
critical stretch �C=exp�−N /2�. That is, the necking instabil-
ity requires more deformation than the pull-in instability.
This difference is understood by inspecting the two terms on
the left-hand side of Eq. �2�. The reduction in the thickness
of the layer from H to �H causes geometric softening, but �
enters the two terms by different powers: the geometric soft-
ening impacts more on the voltage than on the force.

In general, when P is fixed at any value, the voltage is a
function ���� as determined by Eq. �2�. Setting d���� /d�
=0 at a fixed value of P, we obtain that

P

HL��
+ 4�� �

H�
�2

= 2NK�− ln ��N−1. �3�

This equation is also obtained by regarding Eq. �2� as a func-
tion P��� when � is fixed at any value, and then setting
dP��� /d�=0.

Equations �2� and �3� together determine the critical con-
ditions for the electromechanical instability in a power-law
dielectric subject to combined tensile force and voltage. Un-
der the critical conditions, once any one of the three param-
eters, �, P, and �, are prescribed, the other two can be de-
termined by simultaneously solving Eqs. �2� and �3�. Figure
4 plots the critical conditions for the electromechancial in-
stability on the plane with the force and the voltage as coor-
dinates. The critical voltage is small when the tensile force is
large. This trend agrees with experimental observations.10–16

Recall that the stress and the electric field are related to
the force and the voltage. From Eqs. �2� and �3� we can solve
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FIG. 2. For an incompressible dielectric, the state of strain caused by a
biaxial force and a voltage is the same as that caused by a uniaxial com-
pressive stress of magnitude �+�E2.

FIG. 3. �Color online� �a� The force as
a function of the stretch for several
fixed values of the voltage. �b� The
voltage as a function of the stretch for
several fixed values of the force.
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the stress and the electric field in terms of �, namely,

�

K
=

4

3
�− ln ��N −

2N

3
�− ln ��N−1, �4�

�E2

K
= −

1

3
�− ln ��N +

2N

3
�− ln ��N−1. �5�

In terms of the parameters � ,E ,�, these two equations ex-
press the critical conditions under which the electromechan-
cial instability sets in. The critical conditions �4� and �5�
generalize both the Considère condition and the Stark–
Garton condition. These equations are plotted in Fig. 5. The

electromechanical instability precedes electrical breakdown
when the critical electric field determined in Fig. 5 is lower
than the electric breakdown strength of the polymer. In the
above, we have assumed that the applied force is tensile. The
results in Eqs. �4� and �5�, however, are formally applicable
when the applied force is compressive. So long as the com-
pressive force does not cause the layer to buckle, the com-
pression will increase the critical voltage.

We have calculated the critical conditions for the elec-
tromechanical instability of a semicrystalline polymer sub-
ject to a combination of mechanical force and electric volt-
age. To focus on essential ideas, we have restricted to the
biaxial force and power-law material model. The method,
however, can be extended to other loading conditions20 and
other material models.21 While the model predicts the same
trend as reported in the experimental literature,10–16 we hope
that more complete experimental data will become available
to ascertain the model.
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FIG. 4. �Color online� On the plane with the force and the voltage as
coordinates, the critical conditions for the electromechanical instability are
plotted for several values of the hardening exponent.
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FIG. 5. �Color online� �a� The critical stress as a function of the critical
stretch for several values of the hardening exponent. �b� The critical electric
field as a function of the critical stretch for several values of the hardening
exponent.
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