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A gel is an aggregate of polymers and solvent molecules. The polymers crosslink into a
three-dimensional network by strong chemical bonds and enable the gel to retain its shape after a
large deformation. The solvent molecules, however, interact among themselves and with the
network by weak physical bonds and enable the gel to be a conduit of mass transport. The
time-dependent concurrent process of large deformation and mass transport is studied by developing
a finite element method. We combine the kinematics of large deformation, the conservation of the
solvent molecules, the conditions of local equilibrium, and the kinetics of migration to evolve
simultaneously two fields: the displacement of the network and the chemical potential of the solvent.
The finite element method is demonstrated by analyzing several phenomena, such as swelling,
draining and buckling. This work builds a platform to study diverse phenomena in gels with spatial
and temporal complexity. © 2009 American Institute of Physics. �DOI: 10.1063/1.3106628�

I. INTRODUCTION

Long-chain polymers may crosslink by strong chemical
bonds into a three-dimensional network. The resulting mate-
rial, an elastomer, is capable of large and reversible deforma-
tion. The elastomer may imbibe a large quantity of solvents,
aggregating into a gel �Fig. 1�. The solvent molecules in the
gel interact by weak physical bonds and can migrate. The
dual attributes of a solid and a liquid make the gel a material
of choice in nature and in engineering. For example, gels
constitute many tissues of animals and plants. The solid at-
tribute enables the tissues to retain shapes, while the fluid
attribute enables the tissues to transport nutrients and wastes.
Gels are also synthesized for diverse applications, including
food processing,1 drug delivery,2–5 tissue engineering,6,7 ac-
tuators in miniaturized devices,8–10 and packers in oil wells.11

Many processes in gels involve concurrent deformation
and migration. For example, a drug loaded in a gel can mi-
grate out in response to a change in the physiological condi-
tions �i.e., the temperature, the level of pH, or the concen-
tration of an enzyme�. The rate of the release may be
modulated by the deformation of the gel �e.g., Ref. 12�. As
another example, patterns of crease often appear on the sur-
face of a swelling gel �e.g., Refs 13 and 14�, along with
many other forms of buckling.15–18 Furthermore, swelling
may induce stress localization in gels, which leads to cavita-
tion and delamination.19 Hydrogels with submillimeter size
have been extensively used as valves in microfluidics due to
the short swelling time and large deformation.8

This paper studies the concurrent deformation and mi-
gration in the gel by a finite element method. Our method
builds upon a theory dating back to Gibbs �1878�, who for-
mulated a thermodynamic theory of mobile molecules in an
elastic solid. Biot �1941� combined the thermodynamic

theory and Darcy’s law for mass transport in a porous me-
dium. Both Gibbs and Biot used phenomenological free-
energy functions, and their works were not specific for the
polymeric gel. Using statistical mechanics, Flory and
Rehner20 developed a free-energy function for the gel, in-
cluding the effects of the entropy of stretching the network,
the entropy of mixing the network polymers and the solvent
molecules, and the enthalpy of mixing. Reviews of subse-
quent contributions to the theory of polymeric gels are
found, among others, in Refs. 15 and 21–26. Another theory
that is able to study the deformation and migration is the
mixture theory,27 in which the fluid and solid follow different
field equations.

There have been several previous efforts to develop fi-
nite element methods for gels. Westbrook and Qi28 and Hong

a�Electronic mail: hanqing.jiang@asu.edu. FIG. 1. �Color online� A schematic of structure of a gel.
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et al.29 have developed finite element methods for gels in a
state of equilibrium. Suematsu et al.30 conducted the three-
dimensional explicit finite element analysis to study the pat-
tern formation of swelling gels by introducing a friction con-
stant between the polymeric chains and solvents.15 As
pointed out by Suematsu et al.,30 this method is not suited for
larger systems over longer time intervals. Dolbow et al.22

used a hybrid eXtended-Finite-Element/Level-Set method to
study the swelling of gels. Li et al.24 used an explicit method
to alternately solve the coupled problems for gels, namely,
the deformation of gels is solved after the convergent results
for mass transport is obtained. Birgersson et al.31 conducted
transient analysis of temperature-sensitive two-dimensional
gels by using finite element solver, COMSOL MULTIPHYSICS.

Given various theories and numerical methods, as well
as a large number of phenomena and applications, ample
room exists for more computational work to connect prin-
ciples of mechanics, thermodynamics, and kinetics to experi-
ments and to molecular models. In particular, we will de-
velop a finite element method using the free-energy function
of Flory and Rhener �1943� and the kinetic model proposed
by Hong et al.26 The implicit method for time discretization
is used, and transport and deformation are solved concur-
rently. We will implement the method in ABAQUS via a user-
defined element �UEL�.

The plan of the paper is as follows. Section II outlines
the theory in a form suitable for the finite element method.
The gel undergoes an irreversible thermodynamic process
that simultaneously evolves two fields: the displacement of
the network and the chemical potential of the solvent. Sec-
tion III describes the material model: the free-energy func-
tion and the mobility tensor. Section IV describes aspects of
finite element implementation. Section V demonstrates the
method by analyzing several time-dependent processes for
three-dimensional gels, including swelling, draining, and
buckling.

II. THEORY OF CONCURRENT DEFORMATION AND
MIGRATION IN A GEL

This section summarizes the theory of concurrent defor-
mation and migration, describing in turn the kinematics of
the network, the conservation of the solvent, the conditions
of local equilibrium, and the kinetics of migration. The
theory is essentially that of Gibbs �1978� and Biot �1941�,
and the notation follows that of Hong et al.26,29

A. Kinematics of the network

We use a standard approach in continuum mechanics to
describe the kinematics of the network. The gel moves in a
three-dimensional space. Imagine that each differential ele-
ment of the network is attached with a marker. Any configu-
ration of the gel can serve as a reference configuration �Fig.
2�. When the gel is in the reference configuration, the marker
occupies in the space a place with coordinates X, which we
will use to label the marker. In the reference configuration,
let dV�X� be an element of volume, dA�X� be an element of
area, and NK�X� be the unit vector normal to the element of
area.

At time t, the gel is in the current configuration, and the
marker X moves in the space to a new place with coordinates
x. The functions xi�X , t� specify the kinematics of the net-
work. As usual, the deformation gradient of the network is
defined as

FiK�X,t� =
�xi�X,t�

�XK
. �1�

We will use F to characterize the state of deformation of an
element of the gel.

B. Conservation of the solvent molecules

We next use nominal quantities to describe the conser-
vation of the solvent molecules. Let C�X , t� be the nominal
concentration of the solvent in the gel in the current configu-
ration, namely, C�X , t�dV�X� is the number of solvent mol-
ecules in the element of volume. Let JK�X , t� be the nominal
flux of the solvent in the gel, namely, JK�X , t�NK�X�A�X� is
the number of the solvent molecules per unit time migrating
across the element of area. Imagine that the network is at-
tached with a field of pumps, which inject the solvent into
the gel. In the current configuration, the pumps inject
r�X , t�dV�X� number of the solvent molecules into the ele-
ment of volume per unit time, and i�X , t�dA�X� number of
the solvent molecules into the element of area per unit time.
We assume that no chemical reaction occurs, so that the
number of the solvent molecules is conserved, namely,

�C�X,t�
�t

+
�JK�X,t�

�XK
= r�X,t� , �2�

in the volume of the gel, and

JK�X,t�NK�X� = − i�X,t� , �3�

on the part of the surface of the gel where the pumps inject
solvent molecules.

C. Conditions of local equilibrium

We now examine the conditions of local equilibrium.
Elements of the gel in different locations may not be in equi-
librium with each other, and this disequilibrium motivates

FIG. 2. The reference and current configurations with an illustration of two
ways doing work on a gel in the current configuration: a mechanical loading
is applied by hanging a weight and a chemical loading is applied by using a
pump to inject small molecules into the gel.
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the solvent to migrate. Each differential element of the gel,
however, is taken to be locally in a state of equilibrium. That
is, the migration of the solvent is such a slow process that the
effect of inertia is negligible, the viscoelastic process in the
element has enough time to relax, and the solvent in the
element has enough time to equilibrate with the solvent in
the pump attached to the element. Furthermore, the gel is
assumed to be held at a constant temperature. We character-
ize the thermodynamic state of the differential element of the
gel by the deformation gradient of the network F�X , t�, and

the chemical potential of the solvent ��X , t�. Let Ŵ�F ,�� be
a free-energy density function of the gel, namely,

Ŵ�F ,��dV�X� is the free energy associated with the element
of the gel. The conditions of local equilibrium require that
the nominal concentration be given by

C = −
�Ŵ�F,��

��
, �4�

and the nominal stress be given by

siK =
�Ŵ�F,��

�FiK
. �5�

When the free-energy density function Ŵ�F ,�� is prescribed
for a gel, Eqs. �4� and �5� constitute the equations of state.

Imagine that the network is attached with a field of
weights, which apply forces to the gel. In the current con-
figuration, the weights apply a force Bi�X , t�dV�X� to the
element of volume, namely, Bi�X , t� is the applied forces in
the current configuration per unit volume of the reference
configuration. Similarly, the weights apply a force
Ti�X , t�dA�X� to the element of area, namely, Ti�X , t� is the
applied forces in the current configuration per unit area of the
reference configuration. The conditions of local equilibrium
require that the inertia effect be negligible and that the vis-
coelastic process in the element be fully relaxed, so that

�siK�X,t�
�XK

+ Bi�X,t� = 0, �6�

in the volume of the gel, and

siK�X,t�NK�X� = Ti�X,t� , �7�

on the part of the surface of the gel where forces are applied.

D. Kinetics of migration

We will also use the nominal quantities to describe the
kinetics of migration. The flux of the solvent is taken to be
linear to the gradient of the chemical potential of the solvent

JK = − MKL�F,��
���X,t�

�XL
, �8�

where MKL is the mobility tensor. The mobility tensor is
symmetric and positive definite, and in general depends on
the thermodynamic state of the element, namely, on local
values of the deformation gradient and the chemical poten-
tial.

The above theory evolves the configuration of the gel,
namely, evolves concurrently the two fields x�X , t� and
��X , t�, once the following items are prescribed:

• the initial conditions x�X , t0� and ��X , t0� at a particu-
lar time t0,

• the applied force Bi�X , t� and the rate of injection
r�X , t� inside the gel,

• either i�X , t� or ��X , t� on the surface of the gel,
• either Ti�X , t� or x�X , t� on the surface of the gel, and
• the free-energy function Ŵ�F ,�� and the mobility ten-

sor MKL�F ,��.

III. MATERIAL MODEL

Within the theory presented in the previous section, a

material model is specified by the functions Ŵ�F ,�� and the
mobility tensor MKL�F ,��. Following Hong et al.,26 we re-
write the free energy of Flory and Rehner20 in the form

Ŵ�F,�� =
1

2
NkT�FiKFiK − 3 − 2 log�det F��

−
kT

v
��det F − 1�log� det F

det F − 1
� +

�

det F
�

−
�

v
�det F − 1� , �9�

where N is the number of polymer chains in the gel divided
by the volume of the gel in the reference state, kT is the
temperature in the unit of energy, v is the volume per solvent
molecule, and � is a dimensionless parameter characterizing
the enthalpy of mixing. In writing Eq. �9�, the reference con-
figuration is taken to be the dry network, and �=0 when the
solvent is in the pure liquid state in equilibrium with its own
vapor.

Assuming that the small molecules diffuse in the gel and
that the coefficient of diffusion of the solvent molecules D is
isotropic and independent of deformation gradient and con-
centration, Hong et al.26 expressed the mobility tensor as

MKL =
D

vkT
�det F − 1�HiKHiL, �10�

where HiK is the transpose of the inverse of the deformation
gradient, namely, HiKFiL=�KL. In writing Eq. �10� the refer-
ence state is taken to be the dry network.

We normalize the free-energy density by kT /v, the stress
by kT /v, and the chemical potential by kT. The theory has no
intrinsic length scale or intrinsic time scale. Let L be a char-
acteristic length in a boundary-value problem. We normalize
all the other lengths by L, and normalize the time by L2 /D.

A representative value of the volume per solvent mol-
ecule is v=10−28 m3. At room temperature, kT=4�10−21 J
and kT /v=4�107 Pa. The Flory–Rehner free-energy den-
sity function introduces two dimensionless material param-
eters: Nv and �. The dry network has a shear modulus NkT
under the small-strain conditions, with the representative val-
ues NkT=104–107 N /m2, which gives the range Nv
=10−4–10−1. The parameter � is a dimensionless measure of
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the enthalpy of mixing, with representative values �
=0–1.2. For applications that prefer gels with large swelling
ratios, materials with low values of � are used. In the nu-
merical examples below, we will take the values Nv=10−3

and �=0.2. The coefficient of diffusion for water is D=8
�10−10 m2 /s.

IV. FINITE ELEMENT FORMULATION

Subject to external forces and immersed in an environ-
ment, a gel will deform and exchange solvent molecules with
the environment. If the applied forces are time-independent,
and the chemical potential of the solvent in the environment
is homogenous and time-independent, after some time the
gel will reach a state of thermodynamic equilibrium, in
which the chemical potential of the solvent inside the gel
becomes homogeneous and takes the same value as that in
the environment. The time needed for the gel to equilibrate
scales with L2 /D, where the length L is a characteristic
length of the gel. When the gel equilibrates, both the defor-
mation of the network and the concentration of the solvent in
the gel can still be inhomogeneous, as studied by Zhao et
al.32 and Hong et al.29

In many applications, however, the gel may not be in a
state of thermodynamic equilibrium, so that the chemical po-
tential of the solvent in the gel is inhomogeneous. The field
of chemical potential of the solvent ��X , t� and the field of
displacement of the network xi�X , t� evolve concurrently. To
study this coevolution, we now use the above theory to for-
mulate a finite element method.

Multiply Eq. �6� by a test function �i�X�, integrate over
the volume of the gel, and then apply the divergence theo-
rem, we obtain that

	 �Ŵ

�FiK

��i

�XK
dV =	 Bi�idV +	 Ti�idA . �11�

In deriving Eq. �11�, we have used the condition of mechani-
cal equilibrium on the surface, Eq. �7�, and the equation of
state, Eq. �5�. The last integral in Eq. �11� extends to the part
of the surface over which the traction Ti is prescribed. On the
remaining part of the surface, the position of the network
must be prescribed, and the test function �i�X� is set to be
zero. The conditions of mechanical equilibrium in Eqs.
�5�–�7� are equivalent to a single statement: the gel is in
mechanical equilibrium if the weak form �Eq. �11�� holds for
any arbitrary test function �i�X�. Indeed, this statement is a
direct consequence of the conditions of local equilibrium, as
discussed in Hong et al.26,29

Multiply Eq. �2� by another test function ��X�, integrate
over the volume of the gel, and then apply the divergence
theorem, we obtain that

	 � �2Ŵ

�� � FjL

�FjL

�t
+

�2Ŵ

��2

��

�t
��dV −	 MKL

��

�XL

��

�XK
dV

= −	 r�dV −	 i�dA . �12�

In deriving Eq. �12� we have replaced the concentration us-
ing the equation of state Eq. �4�, and replaced the flux by

using the kinetic Eq. �8�. The last integral in Eq. �12� extends
to the part of the surface over which the rate of injection i is
prescribed. On the remaining part of the surface, the chemi-
cal potential of the solvent must be prescribed, and the test
function ��X� is set to be zero. Thus, the number of solvent
molecules is conserved if the weak form �Eq. �12�� holds for
arbitrary test function ��X�.

We now discretize the governing Eqs. �11� and �12� in
space. Interpolate the position vector xi�X , t� and the chemi-
cal potential ��X , t� as

xi�X,t� − Xi = Na�X�uai�t� , �13�

��X,t� = Na�X��a�t� . �14�

The index a, as well as the index b below, is reserved for
nodes; repeated a �or b� implies summation over all nodes in
the body. The quantities uai�t� and �a�t� are the displacement
and chemical potential associated with node a. The shape
functions Na�X� can be constructed in several ways; we
adopt the eight-node brick elements. The same approach of
discretization is applied to the test functions �i�X� and ��X�.

Substituting Eqs. �13� and �14� into Eq. �11�, and invok-
ing the arbitrariness of the test function �i�X�, we obtain that

	 �Ŵ

�FiK

�Na

�XK
dV =	 BiNadV +	 TiNadA . �15a�

Equation �15a� is valid at all times. Taking a derivative with
respect to time, we obtain that

dubj

dt
	 �2Ŵ

�FiK � FjL

�Na

�XK

�Nb

�XL
dV

+
d�b

dt
	 �2Ŵ

�FiK � �

�Na

�XK
NbdV

=	 dBi

dt
NadV +	 dTi

dt
NadA . �15b�

Substituting Eqs. �13� and �14� into Eq. �12�, and invoking
the arbitrariness of the test function ��X�, we obtain that

dubj

dt
	 �2Ŵ

�� � FjL

�Nb

�XL
NadV +

d�b

dt
	 �2Ŵ

��2 NbNadV

− �b	 MKL
�Nb

�XL

�Na

�XK
dV

= −	 rNadV −	 iNadA . �16�

Equations �15b� and �16� are ordinary differential equa-
tions that concurrently evolve the nodal values of the dis-
placement and the chemical potential ubj�t� and �b�t�. The
ordinary differential equations can be rewritten in a matrix
form

R
d�

dt
+ K� = P . �17�

The column � lists values of ubj�t� and �b�t� of all nodes.
The column P collects terms on the right-hand side of Eqs.
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�15a� and �16�. The matrix R collects the integrals in Eqs.
�15� and �16� involving the second derivatives of the free-
energy function. The matrix K collects the integral in Eq.
�16� involving the mobility tensor.

We next discretize the problem in time. It is straightfor-
ward to solve Eq. �17� by an explicit method. However, the
stability condition for explicit scheme is very restrictive, es-
pecially when the mobility tensor varies with swelling. The
peak in the mobility tensor will cut down the allowable time
step. Therefore, we use an implicit method to discretize the
equation in time. The increment in the generalized nodal
variable �� at current time t+�t is obtained by solving the
following equation:

At+�t�� = Yt+�t, �18�

with

At+�t =
Rt+�t

�t
+ Kt+�t, �19�

Yt+�t = Pt+�t − Rtd�t

dt
− Kt�t. �20�

The superscript denotes the time of the iterative step.
There are number of ways to solve Eq. �18�. One way is

to use direct solver, which requires that the matrix A be
positive definite. However, effective stiffness matrix A is in-
definite in the present formulation because the positive-
definite mobility tensor M contributes to the negative of ma-
trix A �Eq. �16��. Moreover, at the critical point where
material instability occurs, the effective stiffness matrix A is
singular, which fails the standard iteration procedure, such as
Newton–Raphson method. Explicitly, the solution quickly di-
verges and leads to unphysical predictions �e.g., unbounded
displacement increment�. Various methods have been devel-
oped to resolve this numerical difficulty, such as Riks
method33 that has been used in ABAQUS. To overcome the
convergence difficulty, we adopt a simple method that can be
easily implemented in a typical finite element code. We re-
place A by

A� = A + �I , �21�

where I is the identity matrix and � is a positive number as
a penalty to ensure the positive definiteness of A�. This
modification eliminates the singularity of the effective stiff-
ness matrix to ensure a convergent result is reached. This
method has been extensively used in finite element analysis,
especially in the solution of eigenvalues and eigenvectors of
a singular stiffness matrix.34

It is important to note that the solution to Eq. �18� is
independent of �. This is because the convergence is char-
acterized by Y=0, or Rt�d�t /dt�+Kt�t=Pt, whether we use
A or A�. As to be shown in Section V, the present method is
able to study both the surface wrinkling featured with short
wavelength instabilities and structure buckling featured with
long wavelength instabilities.

Another way to solve Eq. �18� is to use an iterative
solver, which does not require positive definiteness of matrix
A. However, in numerical implementation, the iterative

solver may “overshoot” the results for the current iteration
step based on the previous iteration step, which might lead to
nonphysical phenomena, for instance, det F	1. Conceptu-
ally, det F must be greater than one in this formulation to
ensure the dry gel is incompressible. To resolve this non-
physical prediction, a very small incremental step should be
used. Alternatively, the modification of the effective stiffness
matrix A of Eq. �21� can be used for this purpose.

A common issue in modeling the swelling and shrinking
of gels is the instability, which leads to zero eigenvalues of
effective stiffness matrix A. To maintain the stability and
convergence, the modification of the effective stiffness ma-
trix A �Eq. �21�� is employed. This finite element formula-
tion has been implemented in the ABAQUS/standard finite el-
ement program via its USER-ELEMENT subroutine, where
the implicit time discretization and direct solver are em-
ployed.

V. NUMERICAL EXAMPLES

This section demonstrates the finite element method by
analyzing several time-dependent processes of concurrent
deformation and migration. Wherever possible, efforts are
made to compare the numerical results with solutions ob-
tained by using other methods, and with experimental obser-
vations.

A. A gel drains under a weight

The performance of the finite element method is tested
by comparing the numerical results obtained by using the
finite element method with those using a finite difference
method for a problem studied in Ref. 26. Figure 3 illustrates
a thin layer of a gel immersed in a pure liquid solvent. The
gel first undergoes free swelling subject to no constraint and
no applied forces. The swollen gel is then bonded to a rigid
substrate, and subject to an applied weight. The solvent can
migrate out from the top surface of the gel, and the gel thins
down. The layer will eventually attain a new state of equi-
librium.

Let L be thickness of the dry network subject to no me-
chanical forces. This dry and undeformed configuration is
used as the reference configuration, where a marker has the

FIG. 3. �Color online� An illustration showing a fully swelling gel bonded
to a right substrate and subject to an applied weight via a plate permeable to
the small molecules.
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coordinates X1 and X2 in the plane of the layer, and the
coordinate X3 normal to the layer and pointing downwards.
After free swelling and equilibrating with the pure liquid
solvent, the layer swells by an isotropic stretch, 
1=
2=
3

=3.215. The gel is then bonded to the rigid substrate, and
subjected to a traction s, the weight divided by the area of the
dry polymer. As the solvent migrates out, 
1 and 
2 remain
unchanged, but 
3 changes with time and position. The
thickness of the gel is taken to be much smaller than the
lateral dimensions of the gel, such that the field in gel is
independent of X1 and X2. The functions 
3�X3 , t� and
��X3 , t� are to be determined.

In a finite element model, we use twenty eight-node
brick elements, stacked up one on top of another in the di-
rection of the thickness. To model the full layer of the gel,
we impose vanishing displacements and flux in lateral direc-
tions. The top surface of the gel is prescribed with the trac-
tion s and the vanishing chemical potential, while the bottom
surface of the gel is prescribed with the vanishing displace-
ment and flux. Let tmin be the smallest time over which the
solution is of interest to us, the size of the elements le must
be chosen such that le	
Dtmin. Once le is chosen, the time
step �t must also be limited by �t� le

2 /D.
Figure 4 compares the functions 
3�X3 , t� and ��X3 , t�

obtained from the finite element method in this paper and
that from a finite difference method by Hong et al.26 The
agreement is good. At the short-time limit, the weight is
applied, but the solvent has no time to migrate out, so that
the stretch is unchanged, 
3�X3 ,0�=3.215, but the chemical
potential jumps to a value higher than that of the external
solvent, ��X3 ,0��0. At the long-time limit, the chemical
potential in the gel equilibrates with that of the solvent,
��X3 ,0�=0, and the stretch reduces to a new value. As a
consequence of the conditions of local equilibrium, the top
surface of the gel �X3=0� reaches the long-time limit instan-
taneously, with the vanishing chemical potential as fixed by
the external solvent, and the low stretch. In a short time, the
interior of the gel is still largely in the state of short-time
limit. As the time processes, the solvent migrates out gradu-
ally, and the entire gel evolves toward the long-time limit.

B. Free swelling of a cubic gel

The free swelling of a cube of a gel, side L in the dry
state is studied. Conditions of symmetry are imposed, so that
only one-eighth of the cube is modeled, using 512 brick el-
ements. Figure 5 shows the distribution of dimensionless true
stress v�xx /kT on swelling configurations �keeping the rela-
tive ratio of volumes� at different time, characterized by non-
dimensional parameter Dt /L2. The true stress �ij relates to
the nominal stress siK by

�ij =
siKFjK

det F
. �22�

Immediately upon the beginning of the swelling, the homo-
geneous gel �Fig. 5�a�� swells inhomogeneously �Fig. 5�b�
for Dt /L2=1.25�. The corners that have the largest contact
surface with the solvent swell first, followed by the edges
and then other parts of the gel, which leads to a bowl-like

surface of the gel and generates compressive stress to the gel,
similar to beam bending. As time goes on �Fig. 5�c� for
Dt /L2=25�, the swelling at the edges and the centers catch
up with the swelling at the corners, so that the bowl-like
surfaces become less concave. However, the deformation of
the swelling gel is still inhomogeneous. This bowl-like sur-
face in swelling gels has been observed experimentally that
the gels swell faster at the corners than at the sides and the
centers.35 It is also noticed that the compressive stress de-
creases during swelling. As the swelling process reaches
equilibrium �Fig. 5�d� for Dt /L2→
�, the fully swelling gel
recovers the shape identical to the original one and becomes
totally homogeneous with vanishing stress and large volu-
metric change.

C. Free swelling of a thin sheet

The compressive stress generated due to free swelling
may lead to buckling of gels that have been extensively ob-
served in experiments �e.g., Ref. 36�. This paper studies the
buckling of a free swelling thin film gel. The aspect ratio of
the in-plane dimension and the thickness is 12. Figure 6
shows the generation of wrinkling during swelling �Fig. 6�b��

FIG. 4. �Color online� A gel �Nv=10−3 , �=0.2� is subject to a nominal
stress vs /kT=−0.05. The finite element results are marked by discrete dots,
compared with the analytical solution marked by solid lines. The stretch 
3

�a� and chemical potential � �b� are inhomogeneous and evolves from the
short-time limit to the long-time limit, which shows the creep behavior of a
gel subject to mechanical loading.
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starting from a homogeneous gel �Fig. 6�a��. The similar pat-
terns of crease were observed experimentally by Tanaka
et al.13 Besides the gels with geometric features �e.g., thin
film�, the gels have geometric imperfections that exist for
almost all experiments also have buckling patterns during
free swelling, such as in Sayil and Okay’s36 experiments.

The wrinkles generated during free swelling may be
troublesome in applications. Experimentally, the swelling ra-
tio of gels, one of the most important parameters to charac-
terize gels, is usually measured gravimetrically as a function
of time. In other words, one usually measures the weight
change as a function of time during swelling. The gained
weight of a gel is proportional to the total number of the
small molecules vC absorbed by the swelling gel. To study
whether the wrinkles really affect the weight change, we
compare the finite element results having wrinkles �Figs.
6�b�� with the numerical solution restraining the wrinkles
during free swelling.

Figure 7 shows the total number of the small molecules
vC inside the swelling gel as a function of time. The finite
element results are marked by discrete dots and the numeri-
cal solution is given by a solid line. The finite element results
fairly agree with the numerical results, although there are
some discrepancies, which could be attributed to the differ-

ent aspect ratios used, namely, 12 for finite element results
and infinite for numerical results. This study concludes that
the wrinkles do not significantly affect the weight change as
a function of time. Therefore, people can ignore the wrinkles
if they only concern the weight change.

D. Swelling of a partially constrained gel

A soft gel bonded to a stiff gel provides a model system
to study pattern formation in elastic bodies. The kinetics of
swelling soft gels on stiff gels is very important, especially in
biological problems, such as the development of embryos.37

In this section, we will study the kinetics of swelling of soft
gels bonded to nonswelling stiff gels in striped and circular
geometries. This system was experimentally studied and an
equilibrium state was determined theoretically.18

Figure 8�a� shows the strip geometry consisting of one
thin strip of soft gel bonded to another thin strip of stiff gel.
Let h and w denote the thickness and width of the soft gel,
respectively. The soft gel is subjected to vanishing displace-
ments and flux at the interface between soft and stiff gels.
The zero chemical potential is enforced at the gel/solvent
interface. Figures 8�b� and 8�c� show the buckling patterns
with the same scale at Dt /h2=1.4 and Dt /h2→
 �long-time

FIG. 5. �Color online� Contour plots of the nondimensional Cauchy stress
v�xx /kT for a free swelling cubic gel �size L�L�L� at different time scale
characterized by nondimensional parameter Dt /L2. The initial state �i.e., dry
gel for Dt /L2=0� is shown in �a�. During the free swelling, nonuniform
deformations appear for �b� and �c� with Dt /L2=1.25 and Dt /L2=25, re-
spectively. Compressive stresses are also developed during free swelling. At
the final state �or equilibrium state with Dt /L2→
�, the fully swelling gel
recovers the shape identical to the original one and becomes totally homo-
geneous with vanishing stress and large volumetric change. The same scale
is used to show the large volumetric change. FIG. 6. �Color online� Shapes of �a� a dry gel �Dt /L2=0� and a swelling gel

�Dt /L2=7.5�. During the free swelling, the wrinkle patterns are developed.
The scales for �a� and �b� are different.
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limitation or equilibrium state�. It is observed that the tran-
sient problem has distinct buckling pattern compared with
the equilibrium state. The buckling results from the fact that
fast swelling at the free edges �e.g., top of the soft gel� gen-
erates compressive stress at the soft/stiff gels interfaces, as
clearly shown in the contour plot of nondimensional stress
v�xx /kT, which is also similar to beam bending. The wave-
length 
 of the equilibrium state is consistent with Mora and
Boudaoud’s18 theoretical analysis, i.e., 
=3.256h.

Figure 9�a� shows the geometry in which a disk of a soft
gel is bonded to a stiff gel with the same shape, where Ri and
Ro are inner and outer radius, respectively. We take Ri

=3.5 mm and Ro=5 mm in this study. Vanishing displace-
ment and flux boundary conditions are imposed at the inner
radius and the vanishing chemical potential is used at the
outer radius. Figures 9�b� and 9�c� show the buckling pat-
terns at Dt / �Ro−Ri�2=4.45 and Dt / �Ro−Ri�2→
 �i.e., equi-
librium state�. A coronal buckling pattern �Fig. 9�b�� ob-
served during the swelling finally disappears at the
equilibrium state �Fig. 9�c��.

The different swelling behaviors of a soft, strip gel and a
soft, disk gel indicate that the geometric shapes of the gels
play a very important role on the kinetics of swelling of gels.
These differences �Figs. 8 and 9� can be qualitatively under-
stood in the following. The swelling of the strip gel bonded
to a stiff gel has an analogy to beam bending, i.e., compres-
sive stress at the interface between soft and stiff gels. There-
fore, no matter the thickness of the soft gel, the swelling-
induced compressive stress leads to wrinkles, even at the
equilibrium state as shown in Fig. 8�c�. However, the anal-
ogy to beam bending is not valid for the disk gel due to the
geometric constrain in the circumferential direction. In fact,
it is noticed that the wrinkles for the disk gels �Fig. 9�b�� are
very similar to that of the free swelling thin film gels �Fig.
6�b��, not buckling of strip gels �Figs. 8�b� and 8�c��. There-
fore, at the equilibrium state �Fig. 9�c��, the wrinkling disap-
pears and the fully swelling state is similar to that of the free
swelling thin film gels.

VI. SUMMARY

We have developed a finite element method to simulate
concurrent large deformation and mass transport for gels.
The method is implemented in ABAQUS/standard finite ele-
ment program via its USER-ELEMENT subroutine. Numeri-
cal examples showed that this program is accurate by com-
paring with the available numerical solutions. The program
has been used to study several time-dependent processes of
swelling gels, such as draining of fully swollen gels due to

FIG. 7. The total mass of the small water molecules per unit volume of the
dry gel as a function of time during free swelling of a thin film gel. The
finite element results are given by the discrete dots and the numerical solu-
tion is marked by the solid line. It shows that the buckling pattern does not
significantly affect the total mass of the small water molecules inside the
free swelling thin film gels that are important in many applications.

FIG. 8. �Color online� A swelling soft, strip gel bonded to a nonswelling
stiff, strip gel. An illustration of the system of a soft gel and a stiff gel �a�.
During swelling �Dt /L2=1.4�, the soft gel wrinkles due to the compressive
stress �b�. The wrinkles grow and remain at the equilibrium state �Dt /L2

→
�.
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weight, free swelling-induced surface instability, and buck-
ling pattern formation due to partially confined swelling. Be-
cause the potential sensitivity of material models �i.e., free-
energy density and mobility tensor� on kinetic behaviors of
gels, we plan to study this effect in the future work.
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