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Subject to a voltage, a dielectric elastomer can deform substantially, making it a desirable material
for actuators. Designing such an actuator, however, has been challenging due to nonlinear equations
of state, as well as multiple modes of failure, parameters of design, and measures of performance.
This paper explores these issues, using a spring-roll actuator as an example. We formulate the
equations of state with two degrees of freedom and describe the constraints due to several modes of
failure of the elastomer, including electrical breakdown, electromechanical instability, loss of
tension, and tensile rupture. Also included is the compressive limit of the spring. We show that, for
the spring-roll actuator, loss of tension in the axial direction will always precede electromechanical
instability. We then describe a procedure to maximize the range of actuation by choosing the
parameters of design, such as the prestretch of the elastomer and the stiffness of the spring. © 2008
American Institute of Physics. �DOI: 10.1063/1.3000440�

I. INTRODUCTION

Dielectric elastomer actuators have been intensely stud-
ied in the recent decade.1–15 Possible applications include
medical devices, energy harvesters, and space robotics.16–27

The essential part of such an actuator is a membrane of a
dielectric elastomer sandwiched between two compliant
electrodes. When a voltage is applied between the electrodes,
the elastomer reduces its thickness and expands its area, con-
verting electrical energy into mechanical energy. Attractive
features of dielectric elastomer actuators include large strain
��200%�, fast response ��1 ms�, and high efficiency
�80%–90%�.2

Many types of dielectric elastomer actuators have been
proposed.18–27 The performance of a given type of actuators
can be markedly enhanced by a judicious choice of the pa-
rameters of design. However, choosing the parameters of de-
sign to optimize performance has been challenging, due to
the nonlinear equations of state, as well as multiple modes of
failure, parameters of design, and measures of performance.
In the literature, the choice of the parameters of design has
been mostly made by experimental trial and error.

To explore some of the basic issues in design, we study
one particular type of actuators, the spring-roll actuators.23–26

The construction of a spring-roll actuator is sketched in Fig.
1. Two membranes of a dielectric elastomer are alternated
with two electrodes. The laminate is prestretched in two di-
rections in the plane, and then rolled around a spring. When
the actuator is subjected to an applied voltage and an applied
axial force, the axial elongation couples the electrical and
mechanical actions. The parameters of design include the
prestretches of the elastomer and the stiffness of the spring.
We will formulate equations of state and describe several

modes of failure. We then specify a measure of performance,
the range of actuation, and choose the parameters of design
to optimize the actuator.

II. EQUATIONS OF STATE

This section models the spring-roll actuator as a thermo-
dynamic system with two degrees of freedom. We identify
generalized coordinates, loading parameters, and parameters
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FIG. 1. �Color online� The construction of a spring-roll actuator. Two mem-
branes of a dielectric elastomer are alternated with two electrodes. The
laminate is first prestretched and then rolled around a relaxed spring. When
the spring roll is subjected to a voltage and an axial force, the length of the
spring couples the electrical and mechanical actions.
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of design. We then prescribe the free energy of the actuator
as a function of the generalized coordinates and derive the
equations of state. Following a long tradition of thermody-
namics, we represent the equations of state graphically on
the plane spanned by the generalized coordinates.

With reference to Fig. 1, the electrodes are compliant
and bear no mechanical load. The relaxed elastomer is of
thickness L3 and sides L2 and L1. The relaxed spring is of
length �1

pL1. In fabrication, to fit side 1 of the elastomer to
the length of the spring, one may choose to either prestretch
the elastomer, or precompress the spring, or do some combi-
nation of both. Evidently, this choice in fabrication should
not affect the actuator. Figure 1 illustrates the first choice,
where one prestretches the elastomer to �2

pL2 and �1
pL1, and

then rolls the elastomer around the relaxed spring. The lami-
nate may roll around the spring several times, but the total
thickness of the elastomer in the roll is taken to be small
compared to the diameter of the spring, so that the state of
deformation in the elastomer is homogenous from the inner-
most round to the outermost round. When the actuator is
subject to an applied voltage � and an applied axial force P,
the thickness of the laminate changes to �3L3, and the length
of the spring changes to �1L1. However, side 2 of the lami-
nate �2

pL2 is constrained by the diameter of the spring and
remains unchanged. The elastomer is taken to be incom-
pressible, so that �1�2

p�3=1.
During operation, the actuator varies its state in two

ways, as specified by two generalized coordinates: the stretch
�1 in the axial direction and the charge Q on one of the
electrodes. We assume the actuator to be held at a constant
temperature and prescribe the Helmholtz free energy A of the
actuator as a function of the two generalized coordinates

A��1,Q� =
�

2
��1

2 + ��2
p�2 + ��1�2

p�−2 − 3�L1L2L3

+
1

2�
� Q

�1L1�2
pL2

�2

L1L2L3 +
1

2
k��1L1 − �1

pL1�2.

�1�

In prescribing the free-energy function �1�, we have invoked
several idealizations. First, the elastomer is taken to be a
cross-linked network of long and flexible polymers, obeying
the Gaussian statistics,28 with � being the shear modulus of
the elastomer. Second, following Refs. 14, 15, and 20, we
assume that the dielectric behavior of the elastomer is liquid-
like, unaffected by the deformation, so that the free energy of
the elastomer is the sum of the elastic energy and the dielec-
tric energy, with � being the permittivity of the elastomer.
Third, the spring is taken to obey Hooke’s law, with k being
the stiffness of the spring. Of course, a spring-roll actuator in
reality may deviate from these idealizations. Any such devia-
tion can be accounted for by modifying the free-energy func-
tion, but should not alter the procedure of analysis described
below.

When the actuator is in a state ��1 ,Q�, in equilibrium
with the applied force P and the applied voltage �, for any
small change in the stretch and charge d�1 and dQ, the
change in the Helmholtz free energy equals the work done by
the applied force and the voltage, namely,29

dA = PL1d�1 + �dQ . �2�

Consequently, the force and the voltage are the partial differ-
ential coefficients of the free-energy function A��1 ,Q�. The
axial force is work conjugate to the elongation

P =
�A��1,Q�

L1 � �1
. �3�

The voltage is work conjugate to the charge

� =
�A��1,Q�

�Q
. �4�

Inserting �1� into �3�, we obtain that

P

�L2L3
= ��1 − �1

−3��2
p�−2� −

1

�1
3��2

p�2� Q
���L1L2

�2

+ ���1 − �1
p� , �5�

where �= �kL1� / ��L2L3� is a dimensionless ratio between
the stiffness of the spring and that of the elastomer. Equation
�5� shows that the axial force is balanced by contributions of
three origins: the elasticity of the elastomer, the permittivity
of the elastomer, and the elasticity of the spring. Equation �5�
can also be obtained by invoking the Maxwell stress.23–26

Inserting �1� into �4�, we obtain that

�

L3
� �

�
=

1

��1�2
p�2� Q

���L1L2
� . �6�

Equation �6� recovers the familiar equation for an incom-
pressible dieletric liquid D=�E, where E=� / ��3L3� is the
true electric field and D=Q / ��1L1�2

pL2� is the true electric
displacement.

The actuator has three dimensionless parameters of de-
sign: the prestretches in the two directions in the plane of the
elastomer �1

p and �2
p, as well as the normalized stiffness of

the spring �. These parameters of design are prescribed once
the actuator is constructed. Equations �5� and �6� are the
equations of state, relating the dimensionless loading param-
eters, P / ��L2L3� and � / �L3

�� /��, to the dimensionless
generalized coordinates, �1 and Q / �L1L2

����.
These nonlinear equations of state can be displayed

graphically on a plane spanned by the two dimensionless
generalized coordinates �Fig. 2�. Plotted on this plane are the
lines of constant force and the lines of constant voltage.
When the applied force is fixed, both the axial stretch and the
charge increase with the voltage. When the voltage is fixed,
both the axial stretch and the charge increase with the ap-
plied force. Figure 2 can be used to locate the state of the
actuator under prescribed axial force and voltage. For ex-
ample, in the absence of the external loads, P=0 and �=0,
the charge also vanishes and the intersection between the line
of zero force P=0 and the vertical axis Q=0 gives the stretch
�1�1.4. In plotting the equations of state in Fig. 2, we have
set the parameters of design to a particular set of values, as
indicated in Fig. 2.
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III. MODES OF FAILURE

The range of operation of an actuator is limited by vari-
ous modes of failure. Each mode of failure restricts the state
of the actuator to a region on the plane of the generalized
coordinates. The common region that averts all modes of
failure constitutes the set of allowable states. To illustrate the
procedure to construct the region of allowable states, we next
consider several representative modes of failure.1,6,14

First we consider electromechanical instability �EMI� of
the elastomer. As the applied voltage is increased, the elas-
tomer reduces its thickness, so that the voltage induces a
high electric field. The positive feedback between a thinner
elastomer and a higher electric field may cause the elastomer
to thin down drastically, resulting in an electrical breakdown
�EB�. This EMI can be analyzed by using a standard method
in thermodynamics.14,15,30

Consider a three-dimensional space, with the generalized
coordinates �1 and Q being the horizontal axes, and the
Helmholtz free energy A being the vertical axis. In this
space, the free-energy function A��1 ,Q� is a surface. A point
on the surface represents a state of the actuator, and a curve
on the surface represents a path of actuation. Imagine a plane
tangent to the surface at a state ��1 ,Q�. The slopes of this
tangent plane are PL1 and �, according to �3� and �4�.

For a state ��1 ,Q� to be stable against arbitrary small
perturbation in the generalized coordinates, the surface
A��1 ,Q� must be convex at point ��1 ,Q�. This condition of
stability is equivalent to the following set of inequalities:

�2A��1,Q�
��1

2 � 0, �7a�

�2A��1,Q�
�Q2 � 0, �7b�

�2A��1,Q�
��1

2

�2A��1,Q�
�Q2 � � �2A��1,Q�

��1 � Q
�2

. �7c�

Of the three inequalities, �7a� ensures mechanical stability,
�7b� electrical stability, and �7c� electromechanical stability.
Using �1�, we can confirm that �7a� and �7b� are satisfied for
all values of ��1 ,Q�, but �7c� is violated for some values of
��1 ,Q�. A combination of �1� and �7c� shows that the EMI
sets in when

Q
���L1L2

= ��1 + ���1
4��2

p�2 + 3. �8�

This equation corresponds to the curve marked by EMI in
Fig. 3. The curve divides the ��1 ,Q� plane into two regions.
Above the curve, the actuator is stable against small pertur-
bation of the generalized coordinates. Below the curve, the
actuator undergoes EMI.

We now turn to EB of the elastomer. Even before the
EMI sets in, the electric field in the elastomer may become
too high, leading to localized conduction path through the
thickness of the elastomer. The microscopic process of EB
can be complex and will not be studied in this paper. To
illustrate the procedure of design, here we assume that EB
occurs when the true electric field exceeds a critical value Ec.
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FIG. 2. �Color online� A graphic representation of the equations of state.
When the design variables �� ,�1

p ,�2
p� are prescribed, the state of the actuator

is characterized by two generalized coordinates: the stretch �1 in the axial
direction and the charge Q in one of the electrode. In the ��1 ,Q� plane, a
point represents a state of the actuator and a curve represents a sequence of
states. Plotted on the plane are lines of constant force and lines of constant
voltage.
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FIG. 3. �Color online� A graphic representation of modes of failure. Plotted
on the ��1 ,Q� plane are the critical conditions for several modes of failure:
EMI, EB, loss of tension �s1=0 and s2=0�, and compressive failure of the
spring ��1=�1

p /c�. All these modes of failure are averted in the shaded
region marked as the allowable states. For the set of parameters of design
indicated in the inset, the allowable states are bounded above by tensile
rupture and bonded below by loss of tension and EB.
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For the ideal dielectric elastomer D=�E, where the true elec-
tric displacement is D=Q / ��1�2

PL1L2�, the condition for EB
is

Q
���L1L2

= �1�2
PEC� �

�
. �9�

Equation �9� corresponds to the straight line marked by EB
on the ��1 ,Q� plane in Fig. 3. The actuator in a state in the
region above this straight line will not suffer EB. The straight
line in Fig. 3 is plotted by using representative values �
=100 kPa, EC=108 V /m, and �=4�0, with �0=8.85
�10−12 F /m being the permittivity of the vacuum.

We next consider loss of tension of the elastomer. When
the voltage � is large or the axial force P is compressive and
of a large magnitude, the stress in the plane of the elastomer
may cease to be tensile. This loss of tension will cause the
elastomer to buckle out of the plane, so that the elastomer
will no longer generate a force of actuation. To avert this
mode of failure, we require that the stress be tensile in every
direction in the plane of the elastomer. That is, both the stress
along the axial direction and the stress in the circumferential
direction are required to be tensile, s1�0 and s2�0. Follow-
ing Ref. 14, we obtain the nominal stress in the axial direc-
tion in terms of the two generalized coordinates

s1

�
= ��1 − �1

−3��2
p�−2� − � Q

���L1L2
�2

�1
−3��2

p�−2. �10a�

Setting the critical condition s1=0 in �10a�, we obtain that

Q
���L1L2

= ��1
4��2

p�2 − 1. �10b�

Similarly, we can obtain the nominal stress s2 in terms of the
two generalized coordinates

s2

�
= ��2

p − ��2
p�−3�1

−2� − � Q
���L1L2

�2

��2
p�−3�1

−2. �11a�

Setting the critical condition s2=0 in �11a�, we obtain that

Q
���L1L2

= ��1
2��2

p�4 − 1. �11b�

The critical conditions for loss of tension, s1=0 and s2=0,
are plotted in Fig. 3. A comparison of �8� and �10b� shows
that, for spring-roll actuators, loss of tension in the axial
direction will always precede EMI. By contrast, other types
of dielectric elastomer actuators may fail by EMI.1,6,14,30

We next consider tensile rupture of the elastomer. When
an elastomer is stretched too severely, the elastomer may
rupture. The critical condition for tensile rupture is not well
quantified. Here we will use the simple criterion that the
elastomer will rupture when either stretch, �1 or �2, exceeds
a critical value �c. A representative value �c=5 is included in
Fig. 3.

We finally consider the compressive limit of the spring.
The spring in the spring-roll actuator is designed to be under
compression. When the spring is compressed excessively,
however, it may deform plastically. The length of the spring
at its relaxed state is �1

PL1, and the length of the actuated

spring is �1L1. We assume that the spring deforms plastically
when �1

P /�1 exceeds a critical value c, which we set to be
c=4. In the ��1 ,Q� plane �Fig. 3� the region above the line
�1=�1

P /c will guarantee that the spring remains elastic.
The modes of failure discussed in this section are all

averted in the shaded region in Fig. 3. As evident from the
above discussion, this region of allowable states will depend
on the critical conditions for various modes of failure. Fur-
thermore, when a different mode of failure is identified, an-
other curve will be added to the diagram, so that the region
of allowable states may recede. In the remainder of the pa-
per, to illustrate the procedure of design, we will confine our
attention to the modes of failure and the critical conditions
listed in this section.

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Q/L1L2
√

�µ

λ
1

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Q/L1L2
√

�µ

λ
1

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Q/L1L2
√

�µ

λ
1

(a)

(b)

(c)

s1=0

s1=0

λp
1 = 3, λp

2 = 3, α = 3,
Ec = 108V/m, � = 4�0,
µ = 100kPa

λp
1 = 2, λp

2 = 2, α = 0.5,
Ec = 108V/m, � = 4�0,
µ = 100kPa

EMI

EB

s1=0

λp
1 = 2, λp

2 = 2, α = 2,
Ec = 108V/m, � = 4�0,
µ = 100kPa

P/µL2L3=-2

P/µL2L3=-2

P/µL2L3=-2

EB

EMI

EMI

λ = λP
1 /c

s2 = 0

λ = λP
1 /c

λ = λP
1 /c

s2=0

s2=0

EB

FIG. 4. �Color online� A line of constant force P / ��L2L3�=−2 is plotted
along with the critical conditions for failure. When the voltage increases, the
state of actuator moves along the line of constant force, beginning at Q=0
and ending at a critical state set by one mode of failure. The region of
allowable states varies with the parameters of design. �a� For one set of
parameters of design, the range of actuation is limited by the loss of tension
in the axial direction. �b� For a second set of parameters of design, the range
of actuation is limited by EB. �c� For a third set of parameters of design, the
line of constant force falls outside the region of allowable states, so that the
actuator so constructed will not function.
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IV. CHOOSE PARAMETERS OF DESIGN TO MAXIMIZE
THE RANGE OF ACTUATION

We now combine the graph for the equations of states
�Fig. 2� and the graph for the modes of failure �Fig. 3�.
Consider an actuator subject to a fixed axial force �i.e., a
dead weight�, P / ��L2L3�=−2. Figure 4�a� includes the line
of constant force, as well as the critical conditions for vari-
ous modes of failure. As the voltage increases, the state of
the actuator moves along the line of constant force, starting
at the state of zero charge and ending at the state when s1

=0. That is, of all modes of failure considered above, loss of
tension in the axial direction limits the range of operation.
Diagram such as Fig. 4�a� can be constructed for other sets of
parameters of design. For example, with a second set of pa-
rameters of design in Fig. 4�b�, the range of operation is
limited by EB. With a third set of parameters of design in
Fig. 4�c�, the line of constant force falls outside of the region
of allowable state, indicating that the actuator so designed
will not function.

How does one choose the parameters of design to opti-
mize an actuator? To optimize an actuator, one needs to
specify what is to be optimized for. That is, one needs to

specify a measure of performance. In practice, one might
need to consider several measures of performance and
choose the parameters of design to compromise. To illustrate
the basic procedure, here we specify a particular measure of
performance as follows.

As illustrated in Fig. 4, for a given set of the parameters
of design ��1

p ,�2
p ,�� and a prescribed value of the axial load

P / ��L2L3� when the applied voltage increases, the state of
the actuator moves along the line of constant force, starting
at the state of zero charge and ending at the critical state
where one failure mode sets in. We define the range of ac-
tuation 	 by the stretch of the critical state with respect to the
state of zero voltage, namely,

	 =
�1

fail

�1	�=0
, �12�

where �1 	�=0 is the axial stretch at zero voltage, and �1
fail is

the stretch at which the actuator fails.
The stretch at zero voltage is determined by �5� by set-

ting Q=0, so that

FIG. 5. �Color online� The effect of prestretch �1
p on the range of actuation.

�a� The values of �1 under the critical conditions for various modes of
failure: EMI, EB, loss of tension �s1=0 and s2=0�, and compressive limit of
the spring ��1=�1

p /c�. Also included is �1 under the condition �=0. �b� The
range of actuation as a function of �1

p.

FIG. 6. �Color online� The effect of prestretch �2
p on the range of actuation.

�a� The values of �1 under the critical conditions for various modes of
failure: EB, loss of tension �s1=0 and s2=0�, and compressive limit of the
spring ��1=�1

p /c�. Also included is �1 under the condition �=0. For this set
of parameters of design, EMI does not occur. �b� The range of actuation as
a function �2

p.
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P

�L2L3
= �1 − �1

−3��2
p�−2 + ���1 − �1

p� . �13�

This nonlinear equation can be solved numerically to deter-
mine �1 	�=0. As illustrated by the counter example in Fig.
4�c�, to ensure that the line of constant force falls inside the
region of allowable states, we require that �1 	�=0 be above
all failure criteria specified in Sec. III when Q=0.

The stretch �1
fail is limited by one of the modes of failure,

namely,

�1
fail = Min��1	EMI,�1	EB,�1	s1=0,�1	s2=0,�c� . �14�

These critical stretches are determined by inserting the vari-
ous failure criteria in Sec. III into �5�. The results are as
follows. The critical stretch for EMI is

�1	EMI = 
 − 4�2
p−2

��1
p +

P

�L2L3
�

1/3

. �15�

The critical value of �1 for EB is solved from a fourth-order
algebraic equation

− �1 + ���1
4 + ���1

p +
P

�L2L3
��1

3 +
�

�
EC

2 �1
2 + ��2

p�−2 = 0.

�16�

The critical stretch for loss of tension is given by

�1	s1=0 =
P

��L2L3
+ �1

p �17�

and

�1	s2=0 =

P

�L2L3
+ ��1

p +�� P

�L2L3
+ ��1

p�2

+ 4�� + 1��2
p2

2�� + 1�
.

�18�

Now we study the effect of parameters of design on the
range of actuation 	. To gain insight into the behavior, we
will now fix two of the three parameters of design ��1

p ,�2
p ,��

and vary the third. In addition, the axial force is held at
P / ��L2L3�=−2. Figure 5 shows the effect of �1

p on the range
of actuation, plotting in Fig. 5�a� the critical stretches set by
various mode of failure and in Fig. 5�b� the range of actua-
tion. The allowable region of actuation is the region below
the critical stretches and above �1 	�=0. As shown in Fig. 5�a�,
�1 	s1=0��1 	�=0 when �1

p�1.75. For such a low prestretch,
the actuator fails by loss of tension under the axial force even
without any voltage. When 1.75��1

p�3, the loss of tension

FIG. 7. �Color online� The effect of the stiffness of the spring � on the range
of actuation. �a� The values of �1 under the critical conditions for various
modes of failure: EMI, EB, loss of tension �s1=0 and s2=0�, and compres-
sive limit of the spring ��1=�1

p /c�. Also included is �1 under the condition
�=0. �b� The range of actuation as a function of �.
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FIG. 8. The optimal design of the actuator subject to various levels of the
axial force. ��a�–�c�� The optimal choice of the parameters of design. �d� The
maximum range of actuation.
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is still the upper limit for the range of actuation, but now the
actuator can work under voltage. When �1

p�3, the range of
actuation is limited by EB.

Figure 6 shows the effect of �2
p on the range of actuation.

In this case, loss of tension sets the upper limit for the range
of actuation. Furthermore, the range of actuation increases
monotonically with �2

p.
Figure 7 shows the effect of the normalized stiffness of

the spring � on the range of actuation. In this case the loss of
tension in the axial direction limits the range of actuation.
The range of actuation, however, is not a monotonic function
of �. For small �, the spring is so compliant that the elas-
tomer loses tension readily under the dead load, and the
range of actuation is small. For large �, the spring is so stiff
that the voltage cannot increase elongation much, and the
range of actuation is also small. The range of actuation 	
peaks at an intermediate value of �.

Finally, we vary all three parameters of design
��1

p ,�2
p ,�� to maximize the range of actuation 	, subject to

the constraint of all the modes of failure. We proceed as
follows. For a given value of P / ��L2L3�, we calculate the
function 	��1

p ,�2
p ,�� according to the above procedure. We

then locate the maximum value of 	 and the associated val-
ues of ��1

p ,�2
p ,��. Inspecting the critical conditions for EMI,

EB, and loss of tension, we observe that for each of these
modes the maximum allowable charge increases with �2

p.
Consequently, in our optimization we set �2

p to the maximum
allowable value �2

p=5. Figure 8 plots the results for various
level of prescribed axial force. In the absence of the applied
force P / ��L2L3�=0, the combination of �1

p=1, �2
p=5, and

�=0 gives the optimal range of actuation 	�4.2. As the
compressive force increases, one needs to increase both �1

p

and � to maximize the range of actuation.

V. CONCLUDING REMARKS

This paper describes an approach to design dielectric
elastomer actuators to optimize performance. Using the
spring-roll actuator as an illustration, we construct the equa-
tions of state by modeling the actuator as a thermodynamic
system of two degrees of freedom, identify a set of design
variables, and determine the region of allowable states ac-
cording to several modes of failure. We then specify a mea-
sure of performance, the range of actuation, and choose the
design parameters to optimize the actuator. This approach
may be adapted in practice to other types of dielectric elas-
tomer actuators, different modes of failure, other parameters
of design, and other measures of performance.
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