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A polymer network can imbibe water from environment and swell to an equilibrium state. If the
equilibrium is reached when the network is subject to external mechanical constraint, the
deformation of the network is typically anisotropic and the concentration of water inhomogeneous.
Such an equilibrium state in a network constrained by a hard core is modeled here with a nonlinear
differential equation. The presence of the hard core markedly reduces the concentration of water
near the interface and causes high stresses. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2840158�

A network of flexible polymers can imbibe water from
environment and swell, often to a volume many times the
initial volume of the network. Swelling is mainly an entropic
process. The sorption of water increases the number of con-
figurations of the mixture, but the expansion of the network
reduces the number of configurations of the network.1 The
competing trends equilibrate water molecules in the network
with those in the environment. The resulting aggregate of
polymers and water molecules is known as a polymeric
hydrogel.

When a network equilibrates with environment under no
external mechanical constraint, the network swells by a ho-
mogeneous and isotropic expansion and water molecules dis-
tribute in the gel homogeneously. When the network equili-
brates with environment under external mechanical
constraint, however, the network may swell by an inhomo-
geneous and anisotropic deformation and water molecules
may distribute in the gel inhomogeneously. Such inhomoge-
neous and anisotropic equilibrium states are common be-
cause mechanical constraint is ubiquitous in applications of
gels. However, few theoretical analyses exist for gels in in-
homogeneous and anisotropic equilibrium states, possibly
due to the mathematical difficulty associated with large de-
formation and nonlinear equations.

This paper studies a relatively simple structure. A spheri-
cal shell of gel surrounding a hard core of another material.
Such core-shell structures have been intensely studied ex-
perimentally in recent year.2–4 Potential applications include
drug delivery,5–9 controlled self-assembly,10,11 medical
devices,12 photonic crystals,13,14 and microactuators.15 In
many applications, an understanding of the equilibrium dis-
tribution of water is of essential importance. Also important
is the distribution of stresses, as debonding between the gel
and the core has been reported.2,16 Here, we describe the
inhomogeneous and anisotropic equilibrium state by formu-
lating a nonlinear differential equation.

Figure 1 illustrates a core-shell structure. A water-free
and stress-free polymer network is taken as the reference
state �Fig. 1�a��, where the network is a hollow spherical
shell, with inner radius A and outer radius B. In the equilib-
rium state �Fig. 1�b��, the network is swollen and contains a
hard core of radius A�0. The initial stretch �0 is set by the

method to prepare the structure. For example, the structure
can be prepared by first coating the core with a shell of an
aqueous solution and then cross linking the polymers in the
solution. In this case, �0 relates to the volume fraction of
water in the initial solution.

The structure is subsequently immersed in pure water to
swell further. After some time, water molecules in the gel
equilibrate those in pure water and the gel swells to an inho-
mogeneous and anisotropic state. This behavior is qualita-
tively understood as follows. The core is taken to be rigid
and bonded to the network, so that near the interface the
network cannot further stretch in the circumferential direc-
tions, and is constrained to expand only in the radial direc-
tion. Away from the interface, however, the network can
stretch in all three directions. Consequently, the concentra-
tion of water in the gel is expected to be low near the inter-
face and increases away from the interface.

The inhomogeneous and anisotropic equilibrium state in
an absorbent was formulated by Gibbs.17 He described large
deformation with deformation gradient, mechanical equilib-
rium with differential equations involving nominal stresses,
and chemical equilibrium with a uniform chemical potential
of the solvent. Gibbs derived the equations of state formally
from a free-energy density, which is a function of the defor-
mation gradient and the solvent concentration. However, he
did not give any explicit form of this function. His theory has
reappeared in most subsequent studies �see Refs. 18–23 for
recent contributions�. Here, we will follow the notation of
our recent paper23 and adopt the free-energy function intro-
duced by Flory and Rehner.24

With reference to Fig. 1, imagine each element of the
network is attached with a marker, which moves as the net-
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FIG. 1. �Color online� �a� In the reference state, the polymer network is
water free and stress free. �b� In the equilibrium state, the network is swollen
and contains the rigid core.
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work deforms. The marker is at distance R from the center in
the reference state and is at distance r from the center in the
equilibrium state. The deformed network is taken to retain
the spherical symmetry, so that the deformation is fully
specified by the function r�R�. Markers on a spherical sur-
face of radius R in the reference state move to a spherical
surface of radius r in the equilibrium state. Consequently, the
stretch in every circumferential direction is

�� = r/R . �1�

Two nearby markers in a radial direction, of positions R and
R+dR in the reference state, move to positions r�R� and
r�R+dR� in the equilibrium state. The distance between the
two markers is dR in the reference state and is r�R+dR�
−r�R�=dr in the equilibrium state, so that the stretch in the
radial direction is

�r = dr/dR . �2�

An element of the network, of unit volume in the refer-
ence state, swells to volume ��

2�r in the equilibrium state.
Individual polymers and water molecules are taken to be
incompressible, so that the change in volume of the gel is
due to imbibing water molecules,

vC = ��
2�r − 1, �3�

where v is the volume per solvent molecule and C is the
concentration of water in the gel �i.e., the number of water
molecules in an element of the gel in the equilibrium state
divided by the volume of the element in the reference state�.

In the equilibrium state, the gel develops a field of stress.
Let s��R� be the nominal stress in each circumferential direc-
tion and sr�R� be the nominal stress in the radial direction.
Mechanical equilibrium requires that

dsr

dR
+ 2

sr − s�

R
= 0. �4�

The chemical potential of water molecules in pure water
is set to be zero. Consequently, the chemical potential of
water molecules in the gel is also zero in the equilibrium
state. Using the free energy of Flory and Rehner,24 we write
the equations of state23

s�

NkT
= �� − ��
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where N is the number of polymer chains divided by the
volume of the dry network, kT is the temperature in the unit
of energy, and � is a dimensionless measure of the enthalpy
of mixing. In practice, vN is in the range 10−2–10−5 and � is
in the range 0.1–0.5 for good solvents.

As a special case, when the network swells freely under
no external mechanical constant, in equilibrium, the network
undergoes a homogeneous and isotropic expansion. Setting
�r=��=�free= �vCfree+1�1/3 and s�=0 in Eq. �5�, we obtain a

nonlinear algebraic equation that determines the equilibrium
concentration of water in the free-swelling gel vCfree.

When the network swells subject to the constraint of the
hard core, a combination of Eqs. �1�–�6� leads to a nonlinear
second-order differential equation that governs the function
r�R�. This equation is solved numerically, subject to the
boundary conditions r�A�=�0A and sr�B�=0.

Figure 2�a� plots the equilibrium concentration of water
vC, i.e., the ratio of the volume of water in the equilibrium
state to the volume of the dry network. The equilibrium con-
centration of water in the gel is inhomogeneous, �12 near
the interface and �28 at the outer surface. The latter is close
to the equilibrium concentration of water in a free-swelling
gel vCfree, which is marked as the dashed line in Fig. 2�a�.
Evidently the effect of the constraint on the gel is localized
within a radius only slightly larger than the radius of the
core. The inhomogeneous distribution of water in a core-
shell structure has been observed experimentally.25 Figure
2�b� plots the stretches in the gel. Near the interface, �� is
constrained by the core and does not change during swelling,
but �r increases substantially. Near the outer surface, both
stretches approach that of a free-swelling gel �free. Figure
3�c� plots the stresses in the gel. Near the interface, s� is
compressive, but sr is tensile. Near the outer surface, both
stresses diminish. The magnitudes of the stresses are sub-
stantial, scaling with the elastic modulus of the dry network,
NkT. The tensile radial stress may cause the gel to debond
from the core.2,16

The outer radius b of the gel in the equilibrium state is
important in some applications. Figure 3�a� plots b /B as a
function of B /A. When the network is thin �i.e., B /A is
small�, nearly the entire volume of the network is affected by
the core, so that b /B��0. When the network is thick �i.e.,
B /A is large�, the network away from the interface is nearly
unaffected by the core, so that b /B��free. The gel swells

FIG. 2. �Color online� The equilibrium distributions of �a� water concentra-
tion, �b� stretches, and �c� stresses.
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less when the network is either more hydrophobic �i.e., large
positive � in Fig. 3�b��, or more densely crosslinked �i.e.,
large vN in Fig. 3�c��.

In summary, a polymer network swelling under external
mechanical constraint typically attains an inhomogeneous,
anisotropic equilibrium state. Our calculations show that,
near the core-shell interface, the concentration of water is
greatly reduced and the stresses are high. These trends agree
with available experimental observations. The inhomoge-
neous distribution of water in the equilibrium state clearly
shows that diffusion in gels should not be analyzed using
Fick’s law, which assumes that the diffusion flux is propor-

tional to the concentration gradient. Instead, more general
kinetic laws should be invoked.17–22
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FIG. 3. �Color online� Swelling ratio b /B as a function of B /A at various
values of �a� �0, �b� �, and �c� vN.
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