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Abstract. Effective dielectric constants of diphase composite dielectrics are simulated by Monte Carlo-finite
element method on three-dimensional lattice. Effective dielectric constants with coefficients of variation less than
5.5% are obtained for different ratios of dielectric constants of the two phases, ranging from 10 to 700. Various
mixing rules and equations are fitted to these data and the accuracy and relevance of the fits are thoroughly examined.
Modified logarithmic rule loses its physical basis when fitted to three-dimensional data. As the ratio of dielectric
constants of the two phases increases, the parameters in general Lichterecker mixing rule, general Bruggeman’s
symmetric equation, general effective media equation and its modified form all increase or decrease monotonously.
General effective media equation and its modified form give the best fits to the effective dielectric constants
simulated. The simulation results for the dielectric constants of some composite systems are in good agreement
with experimental data.
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1. Introduction

Practical dielectric ceramics is commonly diphase or
even multiphase composite. The presence of a second
phase is sometimes mainly due to processing technique
and may have a negative effect on the performance of
that material. For example, in the preparation of Pb-
based perovskite relaxor ferroelectrics (such as lead
magnesium niobate, PMN), it is very difficult to fab-
ricate pure perovskite phase without the formation of
a pyrochlore phase, which obviously degrades perfor-
mance of the materials [1, 2]. On the other hand, some
phases are sometimes introduced purposefully, so that
dielectric ceramics can satisfy special requirements
such as specified dielectric constant and its tempera-
ture coefficient. For example, one can utilize phases
with positive and negative temperature coefficients to
compose dielectric material whose temperature coef-
ficient is approximately zero by adjusting the volume
fraction of each phase [3]. In both circumstances, it is
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highly desirable for an equation, or mixing rule, which
can provide accurate enough prediction of effective di-
electric constants of composite to facile the research
and development effort. Moreover, effective properties
of composites, no matter whether they are dielectric or
not, are of general theoretical and applied interest. For
example, the properties of conductor-insulator com-
posites were a subject for extensive experimental and
theoretical investigations [4–7].

It is commonly believed that the effective proper-
ties of diphase composite are strongly dependent on
the properties and the volume fraction of each phase,
as well as particle shapes, spatial distribution, and their
connectivity [8]. The shape parameters of the particle
generally determine its depolarization and demagneti-
zation factors, which are important parameters in some
equations for the effective properties of composites [8].
In some fiber composites, where the minor phase par-
ticles may well disperse in matrix phase or distribute
with some degrees of aggregation, it has been found
that the degree of aggregation is the principal determi-
nant of bulk conductivity of the composites, eclipsing
the effects of orientation and fiber volume fraction [9].
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The connectivity of the individual phases in compos-
ites controls the electric and magnetic flux patterns, as
well as the mechanical stress and the transport prop-
erties [8]. The physical properties of composites can
change by many orders of magnitude depending on the
manner connections are made [8].

In addition to experimental and theoretical ap-
proaches, computer simulations have been adopted
more and more frequently to study the effective proper-
ties of composites [10–12]. For example, Wakino et al.
stimulated the effective dielectric constants of diphase
dielectric composite using Monte Carlo-finite element
method (MC-FEM) on a two-dimensional 25×25 ma-
trix of small squares [12]. By observing the curve of
effective dielectric constants calculated by MC-FEM,
they proposed a modified form of the logarithmic rule
and considered it as the most efficient predictive equa-
tion at that time [12]. We explored some new features
of effective dielectric constants of diphase compos-
ite dielectrics in previous MC-FEM simulations on a
200×200 matrix of small squares and found that there
actually existed equations that could give much better
fit to the simulation data than modified logarithmic rule
[13].

So far, simulations of dielectric properties of three-
dimensional structures are very rare [14] and only those
on periodic lattice were reported [15]. In this paper, we
give the first MC-FEM simulation of effective dielectric
constants of diphase composites on three-dimensional
random structure. The dielectric constants of the two
phases are taken as εl = 1 and εh = 10, 20, 50, 70,
100, 200, 300, 400, 500, 600, and 700; and C = εh : εl

is termed the dielectric constant contrast. (For systems
with the same C values but εl > 1, one can multiply
our simulation results with εl to obtain corresponding
effective dielectric constants.) The volume fraction of
each phase goes from 0.05 to 0.95. Several mixing rules
and equations are then fitted to the simulated effective
dielectric constants and the accuracy and relevance of
the fits are thoroughly examined.

2. Theory

General Lichterecker mixing rule can be written as [16]

εα
m = Vhε

α
h + Vlε

α
l (1)

where εh and εl are the relative dielectric constants
of the high-dielectric phase and low-dielectric phase,

respectively, Vh and Vl the volume fractions of the high-
dielectric phase and low-dielectric phase (Vh +Vl = 1),
εm the effective dielectric constant of the composite,
and α a parameter that determines the type of mixing
rule.

When α = −1, one has a serial mixing rule:

1

εm
= Vh

εh
+ Vl

εl
(2)

and when α = 1, a parallel mixing rule:

εm = Vhεh + Vlεl (3)

In the case where α → 0, Lichterecker proposed an
intermediate form between the serial and parallel form
called logarithmic mixing rule:

log εm = Vh log εh + Vl log εl (4)

There is one parameter in general Lichterecker mixing
rule and none in logarithmic mixing rule.

Serial and parallel mixing rules give lower and upper
limits of the dielectric constant.

Composite media described by serial and parallel
mixing rule are obviously highly anisotropic. Hashin
and Shtrikman provided a tighter magnetic perme-
ability bounds for macroscopically homogenous and
isotropic composites [17]. Written in terms of dielec-
tric constants, the Hashin-Shtrikman upper bound is

εm = εh + Vl

1
εl−εh

+ Vh

3εh

(5)

and the Hashin-Shtrikman lower bound is

εm = εl + Vh
1

εh−εl
+ Vl

3εl

(6)

The composite microstructures characterized by
Hasshim-Shtrikman bounds are well described in [7,
18, 19].

Wakino et al. proposed a modified form of the log-
arithmic mixing rule [12]:

εVh−Vc
m = Vhε

Vh−Vc
h + Vlε

Vh−Vc
l (7)

where Vc was so-called critical volume fraction of the
high-dielectric constant phase and it was at the point Vc

that curves of εm simulated by MC-FEM on 2D lattice
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and predicted by logarithmic mixing rule intersected
each other [12].

Effective medium theory treats the dielectric re-
sponse of a heterogeneous system by assuming that
each particle is, on average, surrounded by a mixture
that has the assumed homogeneous medium property
(εhm) [20]. From the macroscopic polarization, the di-
electric constant of a system with spherical particles
can be written as

εm = εhm

(
1 + 2

∑
i

Vi
εi − εhm

εi + 2εhm

)

×
(

1 −
∑

i

Vi
εi − εhm

εi + 2εhm

)−1

(8)

where i = h or l. According to the self-consistent ef-
fective medium theory, εhm can be reasonably approx-
imated as εm (i.e., εhm = εm), thus giving

Vh
εh − εm

εh + 2εm
+ Vl

εl − εm

εl + 2εm
= 0 (9)

This equation is usually known as the Bruggeman
symmetrical medium equation. The microstructure of
Bruggeman symmetrical medium is also described in
[7, 18, 19].

Bruggeman symmetrical medium equation can be
written in a more general form for oriented ellipsoids
[21]:

Vh
εh − εm

εh + Aεm
+ Vl

εl − εm

εl + Aεm
= 0 (10)

Here A is a non-fixed parameter, which can be further
written as

A = 1 − Vc

Vc
(11)

where Vc is the critical volume fraction of the high-
dielectric constant phase, and for spheres Vc = 1

3 . Be-
cause general Bruggeman symmetrical medium equa-
tion treats both phases on a completely symmetrical
basis, it is expected that it is applicable to composite
where both phases have similar morphologies and are
distributed randomly through the whole system [2].

Percolation theory, whose objective is to character-
ize the connectivity properties in random geometries
and to explore them with respect to physical processes,

thus provides a natural frame for the theoretical de-
scription of random composites [22]. Percolation the-
ory gives a phenomenological power-law dependence
of the effective property of a diphase composite in the
volume fraction range where one phase has just or is
about to form a continuous percolation network or infi-
nite cluster [2]. However, the main problem with using
percolation theory in practical case is that it is only
strictly valid when the ratio of the properties of the two
phases is infinite or zero [23].

General effective media (GEM) equation, which
combines most aspects of both percolation theories and
effective media theories, can be written as [6]:

Vl
(
ε

1/t
l − ε

1/t
m

)
ε

1/t
l + Aε

1/t
m

+ Vh
(
ε

1/t
h − ε
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)
ε

1/t
h + Aε

1/t
m

= 0 (12)

Here, A is also related to Vc by Eq. (11), and t is an
exponent parameter. GEM equation reduces to various
other theoretical expressions, with specified combina-
tions of A and t [8]. It has been shown that GEM equa-
tion was both an effective media interpolation formula
and a matched asymptotic expression for percolation
equation [8].

The modified form of GEM equation can be written
as [4, 5]:
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(
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1/s
l − ε

1/s
m

)
ε

1/s
l + Aε

1/s
m

+ Vh
(
ε

1/t
h − ε

1/t
m

)
ε

1/t
h + Aε

1/t
m

= 0 (13)

where s is another exponent term as t , and A is also
related to Vc by Eq. (11). GEM equation and modified
GEM equation were extensively used to fit ac and dc
conductivity and complex dielectric constant of com-
posites [4–8].

3. Algorithm

3.1. MC-FEM

Our simulations are performed using the Monte Carlo-
finite element method (MC-FEM). The cubic space is
first divided into N × N × N cubic subcells, each of
which can be designated as either low-dielectric con-
stant phase (εl) or high-dielectric constant phase (εh)
[Fig. 1(a)]. The electrical potential difference between
the parallel electrodes is U0 = 10 V . According to
the volume fraction of high-dielectric constant phase
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(a) (b)

(c)

Fig. 1. (a) The cubic lattice is first divided into N ×N ×N subcells (30×30×30 in this illustration) and each subcell is assigned to high-dielectric
constant phase (the gray one) or low-dielectric constant phase (the white one) using random number generator according to Vh (15% in this
illustration). (b) Every subcell is then subdivided into 6 tetrahedronal finite elements (the bold lines show one of them). (c) On each tetrahedronal
finite element, 10 points (4 vertexes and 6 midpoints) are chosen as nodes.

(Vh = 0.05–0.95), the property of each cubic sub-
cell (εh or εl) is determined by standard Monte Carlo
method using random number generator. Each subcell
is divided further into 6 tetrahedronal finite elements
[Fig. 1(b)], on each of which 10 points (4 vertexes and
6 midpoints of edges) are chosen as nodes [Fig. 1(c)].

Within a tetrahedronal element, it is assumed that the
potential is approximated by the expression [24]:

u = C1 + C2x + C3 y + C4z + C5x2 + C6 y2 + C7z2

+ C8xy + C9 yz + C10zx (14)
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where x , y, and z are coordination of point and Ci

(i = 1–10) are coefficients. The energy associated with
a single cubic element is determined by the following
equation:

wi = 1

2
ε0

∫
v

εi (∇u)2dv (15)

where εi is either εh or εl and ε0 is the permittivity of
vacuum. The total energy associated with an assem-
blage of all elements is the sum of all the element en-
ergies and can be written as

W = 1

2
U T SU (16)

where U is a column vector, which indicates potential
of each node and S a matrix. According to the theory
[24], configuration of the electrical field gives a mini-
mum energy, i.e.,

∂W

∂ur
= 0 (17)

where ur is the rth element of U . Equation (17) yields
a linear equation system

DU = b (18)

where D is a sparse matrix and b a column vector. This
linear equation system is resolved and the energy of
the system can then be calculated. According to the
relation

W = 1

2
ε0εm E2 (19)

where E is the voltage between electrodes, the effective
dielectric constant is obtained out eventually. The FEM
algorithm in this section is based on reference [24].

3.2. Accuracy of the Effective Dielectric Constants

One of the basic principles underlying MC-FEM algo-
rithm is the search of the lowest energy of the system. If
the resolution of Eq. (18) were not precise enough, the
energy of the system and therefore the effective dielec-
tric constant calculated would be incorrectly greater. To
estimate the accuracy of our algorithm, FEM calcula-
tions are performed on serial mixing system with adja-
cent layers of different phases for various Ns and Cs. At

each fixed N and C , the effective dielectric constant of
the system can be calculated theoretically using serial
mixing rule, and the electrical potential of each node
can also be calculated exactly. The differences between
potentials obtained using Eq. (18) and the theoretical
ones are recorded for all nodes, and the greatest differ-
ence, µ, is regarded as the potential precision of this
FEM calculation. It has been found that when C and Vh

are fixed, µ increases monotonously as N rises and that
when N and Vh are fixed, µ increases monotonously
as C rises. When N = 30 and C = 700 (the most
rigorous conditions in present work, since these are the
maximum N and C), our algorithm can guarantee a µ

value equal to or less than 1×10−10 v for serial mixing
system, and the difference between effective dielectric
constant calculated by FEM and the theoretical one is
less than 1.54 × 10−7, accurate enough for the purpose
of this work.

3.3. Coefficients of Variation

This paper uses subcells whose property (εh or εl) is
randomly assigned according to volume fraction of
each phase to simulate the distributions of grains of
the two phases in composites. Therefore a series of εms
computed with the same Vh and C show some degree of
fluctuation, an inevitable nature of Monte Carlo simu-
lation. Such fluctuation can be measured by coefficients
of variation of data (CV, standard deviation divided by
average) (Fig. 2). In this paper, for each combination of
C , Vh , and N , a group of εm,i are computed on different
microstructure (i = 1, . . . , 20) to obtain their standard
deviations, average values, and CV. It has been noticed
that when other conditions are fixed, CV decreases ob-
viously with the increase of N [Fig. 2(a)], and nearly
always increases with the augment of C . Moreover,
at given C and N , CV is relatively greater when Vh

is between 0.1 and 0.2, and CV reaches its maximum
when Vh is in the vicinity of 0.15 [Fig. 2(b)]. In this
paper, N is chosen to be 30 when Vh = 0.1, 0.15 and
C = 300–700, and 20 in other conditions. As a result,
all CV values of εms calculated in this paper are less
than 5.5% [Fig. 2(b)].

3.4. Parameter Fitting

In this paper, with each C fixed, a serial of 19 εms
(Vh = 0.05–0.95) are obtained. Thereafter, various
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(a)

(b)

Fig. 2. (a) When C = 700, Vh = 0.15, coefficients of variation (CV)
as a function of N . (b) When C = 100, 200, and 700, coefficients of
variation (CV) as a function of Vh .

mixing rules and equations are fitted to εms simulated
by varying the non-fixed parameters to minimize the
quantity [6]

χ =
[

1

n − p

n∑
i=1

(
εm − εequ

0.01εm

)2
] 1

2

(20)

Here εequ is the effective dielectric constant calcu-
lated by equations using the appropriate variable pa-
rameters, n is the number of data points and p is the
number of variable parameters of each function. If
χ = 1, it is claimed that data have been fitted to an
accuracy of 1% in this case of specified C.

The algorithm for minimizing χ is based on the so-
lution of corresponding Kuhn-Tucker equation through
sequential quadratic method [25].

4. Results and Discussion

4.1. Effective Dielectric Constants

In Figs. 3(a) and (b), the effective dielectric con-
stants simulated using MC-FEM are given (when
Vh = 0 or 1, εm is εl or εh , respectively). Thereafter,
for each plot of εm vs. Vh , we introduce a quantity
R = εm (Vh )−εm (Vh−0.05)

εm (Vh ) , where Vh = 0.05–1, to indicate
the relative increasing rate of εm between Vh-0.05 and
Vh (Fig. 4). Two features are evident: First, all curves
of R vs. Vh peak at the point of Vh = 0.15, which
means that for each C , εm increases relatively most
rapidly as Vh rises from 0.1 to 0.15. Second, when Vh

is 0.15, R increases monotonously with the augment
of C , which means that larger C value leads to greater
relative increasing rate of εm .

In Figs. 5(a)–(c), we show the potential contours
on section planes vertical to X, Y, and Z axes, when
C = 700 and Vh = 0.15. The high-dielectric phase
subcells sectioned by these planes are also marked. It
is evident that potential contours on these sections all
tend to distribute in such a manner as to avoid passing
through high-dielectric phases. This behavior was also
observed on 2D lattice simulation [12, 13].

4.2. Mixing Rules Fitting

The parameters of general Lichterecker mixing rule for
each C are plotted in Fig. 6(a). Parameter α decreases
monotonously from 0.44 to 0.33 with the augment of
C . It can be observed from Fig. 6(b) that when C = 20
Lichterecker mixing rule can well fit the simulation re-
sults. For all C values, the curves of εm calculated by
logarithmic mixing rule never intersect the curves of
simulated εm (except when Vh = 0 or 1), as shown
in Figs. 6(b) and (c). Chen measured the effective di-
electric constants of PMN-pyrochlore system at 25◦C,
where the dielectric constants of PMN and pyrochlore
were 14138 and 153.3, respectively [2]. He also noticed
that the curve of experimental εm did not intersect with
the curve of εm predicted by logarithmic mixing rule
[2]. However, this was not the case in 2D simulations,
where these two curves have one intersection [12, 13].
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(a)

(b)

(c)

Fig. 3. (a) εm simulated for C = 10, 20, 50, 70, and 100. (b) εm

simulated for C = 200, 300, 400, 500, 600, and 700. (c) εm simulated
for all C values with Vh from 0 to 0.2.

Fig. 4. Relative increasing rate (R) of εm , when C = 10, 20, 50, 70,
100, 200, 400, and 700.

Moreover, it is evident from Figs. 6(b) and (c) that the
discrepancy between εm calculated by logarithmic mix-
ing rule and simulated by MC-FEM is comparatively
very large except when Vh is very high or very low.
Therefore, one should be very cautious to use logarith-
mic mixing rule to predict effective dielectric constants
of real dielectric materials.

Because there is no intersection between εm curves
simulated on 3D system and calculated using loga-
rithmic mixing rule, modified logarithmic mixing rule
loses its physical basis, for its parameter Vc has become
meaningless on 3D system.

When general Bruggeman symmetrical medium
equation is fitted to εm simulated [Fig. 7(a)], it is ev-
ident that parameter A obtained for each C is larger
than 2, and that as C rises, A increases monotonously
from 2.91 to 4.39 [Fig. 7(b)].

Curves of parameter A in GEM equation and mod-
ified GEM equation are also plotted in Fig. 7(b). Both
curves have a similar shape as that of A in gen-
eral Bruggeman symmetrical medium equation. At the
same C , modified GEM equation gives the greatest A
and general Bruggeman symmetrical medium equation
the smallest.

The critical volume fractions of the high-dielectric
constant phase of general Bruggeman symmetrical
medium equation, GEM equation, and modified GEM
equation are also plotted as Vc vs. C in Fig. 7(c). In
conductor-insulator composite media, the critical vol-
ume fraction for the high-conductivity phase typically
varies between 0.01 and 0.6 [8]. A “basic” value of
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(a) (b)

(c)

Fig. 5. When C = 700 and Vh = 0.15, potential contours on section planes: (a) X = 15, (b) Y = 15 and (c) Z = 15. The high-dielectric phases
subcells are marked gray.

the critical volume fraction has been considered to be
about 0.16 for conductor-insulator media, because this
value is obtained whenever contacting conducting hard
spheres are placed at random on a regular lattice or con-
ducting hard spheres are randomly packed with equally,
or near equally, sized insulating spheres [8]. It can be
observed that when C > 200, Vc’s obtained from fitting
GEM equation are also around 0.16.

GEM equation and modified GEM equation can be
best fitted to the simulated data [Fig. 8(a)]. Parameters

t and s in modified GEM equation and t in GEM equa-
tion are shown in Fig. 8(b). As C rises from 10 to 700, t
in GEM equation increases from 1.18 to 1.30; t in mod-
ified GEM equation from 1.19 to 1.37 monotonously.
At the same C , the t value in modified GEM equa-
tion is slightly greater than that in GEM equation. The
other parameter s in modified GEM equation decreases
slightly yet steadily from 0.98 to 0.95 with the augment
of C . Up until nearly fifteen years ago, it was widely
believed that exponents s and t should be universal and
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(a) (b)

(c)

Fig. 6. General Lichterecker mixing rule (GL) fitted to εm simulated: (a) Parameter α in general Lichterecker mixing rule (GL). (b) When
C = 20, εm simulated by MC-FEM and calculated by general Lichterecker mixing rule (GL) with α = 1, 0.437, 0, and −1. (c) When C = 700,
εm simulated by MC-FEM and calculated by general Lichterecker mixing rule (GL) with α = 1, 0.331, 0, and −1.

depend on the dimensions of the system only. The most
widely accepted universal values, in three dimensions,
were s ≈ 0.87and t ≈ 2.0 [26], and in some work
values of t in the range of 1.7 to 2.0 were also con-
sidered acceptable. Since then a number of continuum
systems in which unequivocal nonuniversal exponents
have been observed or predicted [4, 5, 7, 8]. For in-
stance in systems where various conducting powders
were distributed on large insulating grains, values of s
in the range 0.35–1.3 and t in the range 1.7–5.8 were
observed [27]. In conductor-insulator composites, the
contrast of properties of the two phases, i.e., ratio of

conductivities, is usually greater than 108, while the
maximum dielectric constant contrast in our simulation
is only 700. It seems that the lower dielectric constant
contrasts may, at least partially, attribute to the lower t
values in present work.

4.3. Evaluation of Mixing Rules

From Fig. 9, it can be observed that when Vh > 0.8, εm

simulated is very approximate to the upper limit pre-
dicted by Hashin-Shtrikman upper bound and when
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(a) (b)

(c)

Fig. 7. General Bruggeman symmetrical medium equation (GBS) and Bruggeman symmetrical medium equation (BS) fitted to εm simulated:
(a) When C = 700, εm simulated by MC-FEM and calculated by general Bruggeman symmetrical medium equation (GBS) with A = 4.39, and
Bruggeman symmetrical medium equation (BS). (b) Parameter A in general Bruggeman symmetrical medium equation (GBS), GEM equation
(GEM), and modified GEM equation (mGEM). (c) Parameter Vc in general Bruggeman symmetrical medium equation (GBS), GEM equation
(GEM), and modified GEM equation (mGEM).

Vh = 0.95, it even exceeds this bound. It has been
found that when Vh = 0.95 for all C values and when
Vh = 0.9 for C = 10, εms simulated are a little higher
than Hashin-Shtrikman upper bound. The largest devi-
ation is 0.11% at Vh = 0.95 and C = 20. Hashin-
Shtrikman bounds were derived theoretically and
supposed to be applicable to macroscopically homoge-
nous and isotropic media [17]. Actually, they were
attained in special Hashin-Shtrikman microgeometry
[7, 17–19]: the composite is made up entirely of mul-
ticoated ellipsoids, in which all the interfaces are con-

focal ellipsoidal surfaces. The ellipsoids must come
in all sizes in order to fill up entire volume, but they
must all have the same ratios of axes, as well as the
same arrangement and volume fractions of the various
components, and they must all be similarly oriented [7,
17–19]. One possible reason for the bound breaking be-
havior in present work is that our models with limited
number of equally-sized subcells (20×20×20) may not
be macroscopically isotropic and homogenous in the
sense of Hashin-Shtrikman microgeometry. Moreover,
similar bound breaking behavior [18] was also noticed
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(a)

(b)

Fig. 8. GEM equation (GEM) and modified GEM equation (mGEM)
fitted to εm simulated: (a) When C = 700, εm simulated by MC-FEM
and calculated by modified GEM equation (mGEM) with A = 7.14,
t = 1.37, and s = 0.95. (b) Parameters t and s in modified GEM
equation (mGEM), and t in GEM equation (GEM). The plots of
εm calculated using GEM equation do not appear in Fig. 8(a) for
the distinctness of curves, because of the similarity between εm ’s
calculated by GEM equation and modified GEM equation.

for the conductivity of cubic bricklayer model [28],
which also has cubic structures. We also note that when
Vh > 0.6, the curve of general Bruggeman symmetrical
medium equation also lies outside Hashin-Shtrikman
upper bound (Fig. 9). This is because general Brugge-
man symmetrical medium equation (except for A = 2)
is for oriented ellipsoids, which gives an anisotropic
media.

Fig. 9. When C = 700, comparison between εm simulated by
MC-FEM, and calculated by Hashin-Shtrikman up bound (UP)
and General Bruggeman symmetrical medium equation (GBS) with
A = 4.39.

Although logarithmic mixing rule is extensively
used to fit data, its representation of εm simulated by
MC-FEM is unsatisfactory [Fig. 10(a)]. The χ of gen-
eral Lichterecker mixing rule is lower than that of log-
arithmic mixing rule for each C value, but higher than
that of general Bruggeman symmetrical medium equa-
tion. When C > 70, χ ’s of general Bruggeman sym-
metrical medium equation increases rapidly with the
augment of C [Fig. 10(b)]. The χ values of GEM equa-
tion and modified GEM equation also increase with C
rising, but much more slowly, and their maximum is
less than 4. Considering that εm simulated by MC-FEM
has the greatest CV value of 5.5%, two conclusions may
be drawn: (1) GEM equation and modified GEM equa-
tion can be used to fit εm simulated most accurately.
(2) In the whole range of volume fraction, GEM equa-
tion gives a fit to the data as statistically good or nearly
as good as that using modified GEM equation. Similar
conclusions were also suggested by Wu and McLach-
lan when fitting GEM equation and modified GEM to
conductivity of composite media [5]. Therefore, in the
research and development of composite dielectrics, it is
advisable to choose either GEM equation or modified
GEM equation as predictive equation.

4.4. Comparison with Experimental Data

Dielectric constants of PMN-pyrochlore and TiO2-
ZrO2 composites are given in Figs. 11 and 12,
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(a)

(b)

Fig. 10. (a) Fitness checks of logarithmic mixing rule (LOG) and
general Lichterecker mixing rule (GL). (b) Fitness checks of general
Bruggeman symmetrical medium equation (GBS), GEM equation
(GEM) and modified GEM equation (mGEM).

respectively; both experimental data [29–31] and sim-
ulation results are shown. It is evident that our simu-
lation results are in good agreement with most of the
experimental data. Especially when the volume frac-
tion of high dielectric phase in composites is higher
than 0.6, MC-FEM simulation can represent the di-
electric constants of PMN-pyrochlore and TiO2-ZrO2

composites very well. GEM equation is also fitted to
the simulation results and corresponding parameters
obtained.

(a)

(b)

Fig. 11. Dielectric constants of PMN-pyrochlore composites: (a) ex-
perimental data in [29], MC-FEM simulation results, and the predic-
tions of GEM equation (GEM) with A = 4.66 and t = 1.24. (b)
experimental data in [30], MC-FEM simulation results, and the pre-
dictions of GEM equation (GEM) with A = 4.61 and t = 1.24.

5. Conclusion

Effective dielectric constants of diphase composite di-
electrics are simulated by Monte Carlo-finite element
method on a cubic lattice in three dimensions. The ra-
tio of the dielectric constants of the two phases goes
from 10 to 700. Several mixing rules and equations
are fitted to the simulation results and the accuracy
and relevance of the fits are thoroughly examined. Pa-
rameters obtained through fitting general Lichterecker
mixing rule, general Bruggeman symmetrical medium
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Fig. 12. Dielectric constants of TiO2-ZrO2 composites: (a) experi-
mental data in [31], MC-FEM simulation results, and the predictions
of GEM equation (GEM) with A = 3.40 and t = 1.20.

equation, GEM equation and modified GEM equation
are given for each ratio of the dielectric constants of the
two phases. These parameters are all found to increase
or decrease monotonously as the ratio of the dielectric
constants of the two phases rises. Modified logarithmic
mixing rule loses its physical basis when fitted to three-
dimensional data. GEM equation and modified GEM
equation give the best fits to the dielectric constants
simulated and the accuracy of their fits is comparable.
The dielectric constants simulated for composite sys-
tems, such as PMN-pyrochlore and TiO2-ZrO2, are in
good agreement with the experimental data. The simu-
lation results are therefore applicable for the prediction
of the dielectric constants of these composite systems.
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